psci_afflvl_suspend.c 17.5 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>

typedef int (*afflvl_suspend_handler)(unsigned long,
				      aff_map_node *,
				      unsigned long,
				      unsigned long,
				      unsigned int);

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*******************************************************************************
 * This function sets the affinity level till which the current cpu is being
 * powered down to during a cpu_suspend call
 ******************************************************************************/
void psci_set_suspend_afflvl(aff_map_node *node, int afflvl)
{
	/*
	 * Check that nobody else is calling this function on our behalf &
	 * this information is being set only in the cpu node
	 */
	assert(node->mpidr == (read_mpidr() & MPIDR_AFFINITY_MASK));
	assert(node->level == MPIDR_AFFLVL0);

	/*
	 * Store the affinity level we are powering down to in our context.
	 * The cache flush in the suspend code will ensure that this info
	 * is available immediately upon resuming.
	 */
	psci_suspend_context[node->data].suspend_level = afflvl;
}

/*******************************************************************************
 * This function gets the affinity level till which the current cpu was powered
 * down during a cpu_suspend call.
 ******************************************************************************/
int psci_get_suspend_afflvl(aff_map_node *node)
{
	/* Return the target affinity level */
	return psci_suspend_context[node->data].suspend_level;
}

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/*******************************************************************************
 * The next three functions implement a handler for each supported affinity
 * level which is called when that affinity level is about to be suspended.
 ******************************************************************************/
static int psci_afflvl0_suspend(unsigned long mpidr,
				aff_map_node *cpu_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	unsigned int index, plat_state;
	unsigned long psci_entrypoint, sctlr = read_sctlr();
	int rc = PSCI_E_SUCCESS;

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

	/*
	 * Generic management: Store the re-entry information for the
	 * non-secure world
	 */
	index = cpu_node->data;
	rc = psci_set_ns_entry_info(index, ns_entrypoint, context_id);
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/*
	 * Arch. management: Save the secure context, flush the
	 * L1 caches and exit intra-cluster coherency et al
	 */
107
108
109
110
111
112
113
114
115
116
	psci_suspend_context[index].sec_sysregs.sctlr = read_sctlr();
	psci_suspend_context[index].sec_sysregs.scr = read_scr();
	psci_suspend_context[index].sec_sysregs.cptr = read_cptr();
	psci_suspend_context[index].sec_sysregs.cpacr = read_cpacr();
	psci_suspend_context[index].sec_sysregs.cntfrq = read_cntfrq_el0();
	psci_suspend_context[index].sec_sysregs.mair = read_mair();
	psci_suspend_context[index].sec_sysregs.tcr = read_tcr();
	psci_suspend_context[index].sec_sysregs.ttbr = read_ttbr0();
	psci_suspend_context[index].sec_sysregs.vbar = read_vbar();
	psci_suspend_context[index].sec_sysregs.pstate =
117
		read_daif() & (DAIF_ABT_BIT | DAIF_DBG_BIT);
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

	/*
	 * Arch. management. Perform the necessary steps to flush all
	 * cpu caches.
	 *
	 * TODO: This power down sequence varies across cpus so it needs to be
	 * abstracted out on the basis of the MIDR like in cpu_reset_handler().
	 * Do the bare minimal for the time being. Fix this before porting to
	 * Cortex models.
	 */
	sctlr &= ~SCTLR_C_BIT;
	write_sctlr(sctlr);

	/*
	 * CAUTION: This flush to the level of unification makes an assumption
	 * about the cache hierarchy at affinity level 0 (cpu) in the platform.
	 * Ideally the platform should tell psci which levels to flush to exit
	 * coherency.
	 */
	dcsw_op_louis(DCCISW);

	/*
	 * Plat. management: Allow the platform to perform the
	 * necessary actions to turn off this cpu e.g. set the
	 * platform defined mailbox with the psci entrypoint,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {
		plat_state = psci_get_aff_phys_state(cpu_node);
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cpu_node->level,
						       plat_state);
	}

	return rc;
}

static int psci_afflvl1_suspend(unsigned long mpidr,
				aff_map_node *cluster_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Sanity check the cluster level */
	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Keep the physical state of this cluster handy to decide
	 * what action needs to be taken
	 */
	plat_state = psci_get_aff_phys_state(cluster_node);

	/*
	 * Arch. management: Flush all levels of caches to PoC if the
	 * cluster is to be shutdown
	 */
	if (plat_state == PSCI_STATE_OFF)
		dcsw_op_all(DCCISW);

	/*
187
	 * Plat. Management. Allow the platform to do its cluster
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
	 * specific bookeeping e.g. turn off interconnect coherency,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       cluster_node->level,
						       plat_state);
	}

	return rc;
}


static int psci_afflvl2_suspend(unsigned long mpidr,
				aff_map_node *system_node,
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond this */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Keep the physical state of the system handy to decide what
	 * action needs to be taken
	 */
	plat_state = psci_get_aff_phys_state(system_node);

	/*
231
	 * Plat. Management : Allow the platform to do its bookeeping
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
	 * at this affinity level
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
		rc = psci_plat_pm_ops->affinst_suspend(mpidr,
						       psci_entrypoint,
						       ns_entrypoint,
						       system_node->level,
						       plat_state);
	}

	return rc;
}

static const afflvl_suspend_handler psci_afflvl_suspend_handlers[] = {
	psci_afflvl0_suspend,
	psci_afflvl1_suspend,
	psci_afflvl2_suspend,
};

/*******************************************************************************
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the suspend handler for the corresponding affinity
 * levels
 ******************************************************************************/
static int psci_call_suspend_handlers(mpidr_aff_map_nodes mpidr_nodes,
				      int start_afflvl,
				      int end_afflvl,
				      unsigned long mpidr,
				      unsigned long entrypoint,
				      unsigned long context_id,
				      unsigned int power_state)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
	aff_map_node *node;

	for (level = start_afflvl; level <= end_afflvl; level++) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of restoring what we might have torn down at
		 * lower affinity levels.
		 */
		rc = psci_afflvl_suspend_handlers[level](mpidr,
							 node,
							 entrypoint,
							 context_id,
							 power_state);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Top level handler which is called when a cpu wants to suspend its execution.
 * It is assumed that along with turning the cpu off, higher affinity levels
 * until the target affinity level will be turned off as well. It traverses
 * through all the affinity levels performing generic, architectural, platform
 * setup and state management e.g. for a cluster that's to be suspended, it will
 * call the platform specific code which will disable coherency at the
 * interconnect level if the cpu is the last in the cluster. For a cpu it could
 * mean programming the power controller etc.
 *
 * The state of all the relevant affinity levels is changed prior to calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is about to enter.
 *
 * The affinity level specific handlers are called in ascending order i.e. from
 * the lowest to the highest affinity level implemented by the platform because
 * to turn off affinity level X it is neccesary to turn off affinity level X - 1
 * first.
 *
 * CAUTION: This function is called with coherent stacks so that coherency can
 * be turned off and caches can be flushed safely.
318
319
320
321
322
 ******************************************************************************/
int psci_afflvl_suspend(unsigned long mpidr,
			unsigned long entrypoint,
			unsigned long context_id,
			unsigned int power_state,
323
324
			int start_afflvl,
			int end_afflvl)
325
{
326
327
328
	int rc = PSCI_E_SUCCESS;
	unsigned int prev_state;
	mpidr_aff_map_nodes mpidr_nodes;
329
330
331
332

	mpidr &= MPIDR_AFFINITY_MASK;

	/*
333
334
335
336
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
337
	 */
338
339
340
341
342
343
	rc = psci_get_aff_map_nodes(mpidr,
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;
344
345

	/*
346
347
348
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
349
	 */
350
351
352
353
	psci_acquire_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
354
355

	/*
356
357
	 * Keep the old cpu state handy. It will be used to restore the
	 * system to its original state in case something goes wrong
358
	 */
359
	prev_state = psci_get_state(mpidr_nodes[MPIDR_AFFLVL0]->state);
360
361

	/*
362
363
	 * State management: Update the state of each affinity instance
	 * between the start and end affinity levels
364
	 */
365
366
367
368
369
	psci_change_state(mpidr_nodes,
			  start_afflvl,
			  end_afflvl,
			  PSCI_STATE_SUSPEND);

370
371
372
	/* Save the affinity level till which this cpu can be powered down */
	psci_set_suspend_afflvl(mpidr_nodes[MPIDR_AFFLVL0], end_afflvl);

373
374
375
376
377
378
379
380
	/* Perform generic, architecture and platform specific handling */
	rc = psci_call_suspend_handlers(mpidr_nodes,
					start_afflvl,
					end_afflvl,
					mpidr,
					entrypoint,
					context_id,
					power_state);
381
382

	/*
383
384
385
386
387
388
389
	 * If an error is returned by a handler then restore the cpu state
	 * to its original value. If the cpu state is restored then that
	 * should result in the state of the higher affinity levels to
	 * get restored as well.
	 * TODO: We are not undoing any architectural or platform specific
	 * operations that might have completed before encountering the
	 * error. The system might not be in a stable state.
390
	 */
391
392
393
394
395
	if (rc != PSCI_E_SUCCESS)
		psci_change_state(mpidr_nodes,
				  start_afflvl,
				  end_afflvl,
				  prev_state);
396
397

	/*
398
399
	 * Release the locks corresponding to each affinity level in the
	 * reverse order to which they were acquired.
400
	 */
401
402
403
404
	psci_release_afflvl_locks(mpidr,
				  start_afflvl,
				  end_afflvl,
				  mpidr_nodes);
405
406
407
408
409
410
411
412
413

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity suspend request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
static unsigned int psci_afflvl0_suspend_finish(unsigned long mpidr,
414
						aff_map_node *cpu_node)
415
{
416
	unsigned int index, plat_state, state, rc = PSCI_E_SUCCESS;
417
418
419

	assert(cpu_node->level == MPIDR_AFFLVL0);

420
421
422
423
	/* Ensure we have been woken up from a suspended state */
	state = psci_get_state(cpu_node->state);
	assert(state == PSCI_STATE_SUSPEND);

424
425
426
427
428
429
430
431
	/*
	 * Plat. management: Perform the platform specific actions
	 * before we change the state of the cpu e.g. enabling the
	 * gic or zeroing the mailbox register. If anything goes
	 * wrong then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
432
433
434

		/* Get the physical state of this cpu */
		plat_state = psci_get_phys_state(state);
435
436
437
438
439
440
441
442
443
444
445
446
447
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cpu_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/* Get the index for restoring the re-entry information */
	index = cpu_node->data;

	/*
	 * Arch. management: Restore the stashed secure architectural
	 * context in the right order.
	 */
448
449
450
451
452
453
	write_vbar(psci_suspend_context[index].sec_sysregs.vbar);
	write_daif(read_daif() | psci_suspend_context[index].sec_sysregs.pstate);
	write_mair(psci_suspend_context[index].sec_sysregs.mair);
	write_tcr(psci_suspend_context[index].sec_sysregs.tcr);
	write_ttbr0(psci_suspend_context[index].sec_sysregs.ttbr);
	write_sctlr(psci_suspend_context[index].sec_sysregs.sctlr);
454
455

	/* MMU and coherency should be enabled by now */
456
457
458
459
	write_scr(psci_suspend_context[index].sec_sysregs.scr);
	write_cptr(psci_suspend_context[index].sec_sysregs.cptr);
	write_cpacr(psci_suspend_context[index].sec_sysregs.cpacr);
	write_cntfrq_el0(psci_suspend_context[index].sec_sysregs.cntfrq);
460
461
462
463

	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the suspend
464
	 * call to set this cpu on its way.
465
	 */
466
	psci_get_ns_entry_info(index);
467
468
469
470
471
472
473
474

	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

	return rc;
}

static unsigned int psci_afflvl1_suspend_finish(unsigned long mpidr,
475
						aff_map_node *cluster_node)
476
{
477
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
478
479
480
481
482
483
484
485
486
487
488
489

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
490
491
492

		/* Get the physical state of this cpu */
		plat_state = psci_get_aff_phys_state(cluster_node);
493
494
495
496
497
498
499
500
501
502
503
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      cluster_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	return rc;
}


static unsigned int psci_afflvl2_suspend_finish(unsigned long mpidr,
504
						aff_map_node *system_node)
505
{
506
	unsigned int plat_state, rc = PSCI_E_SUCCESS;;
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
525
526
527

		/* Get the physical state of the system */
		plat_state = psci_get_aff_phys_state(system_node);
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
		rc = psci_plat_pm_ops->affinst_suspend_finish(mpidr,
							      system_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	return rc;
}

const afflvl_power_on_finisher psci_afflvl_suspend_finishers[] = {
	psci_afflvl0_suspend_finish,
	psci_afflvl1_suspend_finish,
	psci_afflvl2_suspend_finish,
};