context_mgmt.c 14.6 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
2
 * Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

31
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
32
#include <arch_helpers.h>
33
#include <assert.h>
Achin Gupta's avatar
Achin Gupta committed
34
#include <bl_common.h>
35
#include <context.h>
Achin Gupta's avatar
Achin Gupta committed
36
#include <context_mgmt.h>
37
#include <interrupt_mgmt.h>
38
#include <platform.h>
39
#include <platform_def.h>
40
#include <smcc_helpers.h>
41
#include <string.h>
Achin Gupta's avatar
Achin Gupta committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
57
void cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
58
59
60
61
62
63
64
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

65
/*******************************************************************************
66
 * The following function initializes the cpu_context 'ctx' for
67
68
69
70
71
72
73
74
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
 * of the entry_point_info. The function returns a pointer to the initialized
 * context and sets this as the next context to return to.
 *
 * The EE and ST attributes are used to configure the endianess and secure
75
 * timer availability for the new execution context.
76
77
78
79
80
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
81
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
82
{
83
	unsigned int security_state;
84
85
86
87
88
89
90
	uint32_t scr_el3;
	el3_state_t *state;
	gp_regs_t *gp_regs;
	unsigned long sctlr_elx;

	assert(ctx);

91
92
	security_state = GET_SECURITY_STATE(ep->h.attr);

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
	/* Clear any residual register values from the context */
	memset(ctx, 0, sizeof(*ctx));

	/*
	 * Base the context SCR on the current value, adjust for entry point
	 * specific requirements and set trap bits from the IMF
	 * TODO: provide the base/global SCR bits using another mechanism?
	 */
	scr_el3 = read_scr();
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);

	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;

	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;

	if (EP_GET_ST(ep->h.attr))
		scr_el3 |= SCR_ST_BIT;

114
115
116
117
118
#ifndef HANDLE_EA_EL3_FIRST
	/* Explicitly stop to trap aborts from lower exception levels. */
	scr_el3 &= ~SCR_EA_BIT;
#endif

119
120
121
122
123
#if IMAGE_BL31
	/*
	 * IRQ/FIQ bits only need setting if interrupt routing
	 * model has been set up for BL31.
	 */
124
	scr_el3 |= get_scr_el3_from_routing_model(security_state);
125
#endif
126
127
128

	/*
	 * Set up SCTLR_ELx for the target exception level:
Soren Brinkmann's avatar
Soren Brinkmann committed
129
	 * EE bit is taken from the entrypoint attributes
130
131
132
133
134
135
136
137
138
139
140
141
142
143
	 * M, C and I bits must be zero (as required by PSCI specification)
	 *
	 * The target exception level is based on the spsr mode requested.
	 * If execution is requested to EL2 or hyp mode, HVC is enabled
	 * via SCR_EL3.HCE.
	 *
	 * Always compute the SCTLR_EL1 value and save in the cpu_context
	 * - the EL2 registers are set up by cm_preapre_ns_entry() as they
	 * are not part of the stored cpu_context
	 *
	 * TODO: In debug builds the spsr should be validated and checked
	 * against the CPU support, security state, endianess and pc
	 */
	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
144
145
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
146
	else {
147
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
148
149
150
151
152
153
154
155
156
157
158
		/*
		 * If lower non-secure EL is AArch32, enable the CP15BEN, nTWI
		 * & nTWI bits. This aligns with SCTLR initialization on
		 * systems with an AArch32 EL3, where these bits
		 * architecturally reset to 1.
		 */
		if (security_state != SECURE)
			sctlr_elx |= SCTLR_CP15BEN_BIT | SCTLR_NTWI_BIT
						| SCTLR_NTWE_BIT;
	}

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

	if ((GET_RW(ep->spsr) == MODE_RW_64
	     && GET_EL(ep->spsr) == MODE_EL2)
	    || (GET_RW(ep->spsr) != MODE_RW_64
		&& GET_M32(ep->spsr) == MODE32_hyp)) {
		scr_el3 |= SCR_HCE_BIT;
	}

	/* Populate EL3 state so that we've the right context before doing ERET */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
	uint32_t sctlr_elx, scr_el3, cptr_el2;
	cpu_context_t *ctx = cm_get_context(security_state);

	assert(ctx);

	if (security_state == NON_SECURE) {
		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
		if (scr_el3 & SCR_HCE_BIT) {
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
						 CTX_SCTLR_EL1);
			sctlr_elx &= ~SCTLR_EE_BIT;
			sctlr_elx |= SCTLR_EL2_RES1;
			write_sctlr_el2(sctlr_elx);
		} else if (read_id_aa64pfr0_el1() &
			   (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
			/* EL2 present but unused, need to disable safely */

			/* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);

			/* SCTLR_EL2 : can be ignored when bypassing */

			/* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
			cptr_el2 = read_cptr_el2();
			cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
			write_cptr_el2(cptr_el2);

			/* Enable EL1 access to timer */
			write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);

248
249
250
			/* Reset CNTVOFF_EL2 */
			write_cntvoff_el2(0);

251
252
253
			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
254
255
256
257
258
259
260
261

			/*
			 * Reset VTTBR_EL2.
			 * Needed because cache maintenance operations depend on
			 * the VMID even when non-secure EL1&0 stage 2 address
			 * translation are disabled.
			 */
			write_vttbr_el2(0);
262
263
264
265
266
267
268
269
270
271
			/*
			 * Avoid unexpected debug traps in case where MDCR_EL2
			 * is not completely reset by the hardware - set
			 * MDCR_EL2.HPMN to PMCR_EL0.N and zero the remaining
			 * bits.
			 * MDCR_EL2.HPMN and PMCR_EL0.N fields are the same size
			 * (5 bits) and HPMN is at offset zero within MDCR_EL2.
			 */
			write_mdcr_el2((read_pmcr_el0() & PMCR_EL0_N_BITS)
					>> PMCR_EL0_N_SHIFT);
272
273
274
275
276
277
278
279
280
281
282
283
			/*
			 * Avoid unexpected traps of non-secure access to
			 * certain system registers at EL1 or lower where
			 * HSTR_EL2 is not completely reset to zero by the
			 * hardware - zero the entire register.
			 */
			write_hstr_el2(0);
			/*
			 * Reset CNTHP_CTL_EL2 to disable the EL2 physical timer
			 * and therefore prevent timer interrupts.
			 */
			write_cnthp_ctl_el2(0);
284
285
286
287
288
289
290
291
		}
	}

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));

	cm_set_next_context(ctx);
}

Achin Gupta's avatar
Achin Gupta committed
292
/*******************************************************************************
293
294
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
295
296
297
298
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
299
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
300

301
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
302
303
304
305
306
307
308
	assert(ctx);

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
309
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
310

311
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
312
313
314
315
316
317
	assert(ctx);

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
}

/*******************************************************************************
318
319
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
320
 ******************************************************************************/
321
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
322
{
323
324
	cpu_context_t *ctx;
	el3_state_t *state;
325

326
	ctx = cm_get_context(security_state);
327
328
	assert(ctx);

329
	/* Populate EL3 state so that ERET jumps to the correct entry */
330
331
332
333
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

334
/*******************************************************************************
335
336
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
337
 ******************************************************************************/
338
void cm_set_elr_spsr_el3(uint32_t security_state,
339
			uintptr_t entrypoint, uint32_t spsr)
340
{
341
342
	cpu_context_t *ctx;
	el3_state_t *state;
343

344
	ctx = cm_get_context(security_state);
345
346
347
348
349
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
350
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
351
352
}

353
354
355
356
357
358
359
360
361
362
363
364
365
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

366
	ctx = cm_get_context(security_state);
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
	assert(ctx);

	/* Ensure that the bit position is a valid one */
	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);

	/* Ensure that the 'value' is only a bit wide */
	assert(value <= 1);

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1 << bit_pos);
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

395
	ctx = cm_get_context(security_state);
396
397
398
399
400
401
402
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	return read_ctx_reg(state, CTX_SCR_EL3);
}

403
404
405
406
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
407
408
409
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
410
	cpu_context_t *ctx;
411

412
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
413
414
	assert(ctx);

415
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
416
}