plat_psci_handlers.c 12.1 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
 */

7
8
9
#include <assert.h>
#include <string.h>

10
11
#include <arch.h>
#include <arch_helpers.h>
12
13
#include <common/bl_common.h>
#include <common/debug.h>
14
#include <context.h>
15
#include <cortex_a57.h>
16
#include <denver.h>
17
18
19
20
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/psci/psci.h>
#include <plat/common/platform.h>

21
#include <mce.h>
22
#include <smmu.h>
23
#include <stdbool.h>
24
#include <t18x_ari.h>
25
26
#include <tegra_private.h>

27
extern void memcpy16(void *dest, const void *src, unsigned int length);
28
extern void tegra186_cpu_reset_handler(void);
29
extern uint64_t __tegra186_cpu_reset_handler_end,
30
		__tegra186_smmu_context;
31

32
/* state id mask */
33
#define TEGRA186_STATE_ID_MASK		0xFU
34
/* constants to get power state's wake time */
35
36
#define TEGRA186_WAKE_TIME_MASK		0x0FFFFFF0U
#define TEGRA186_WAKE_TIME_SHIFT	4U
37
/* default core wake mask for CPU_SUSPEND */
38
#define TEGRA186_CORE_WAKE_MASK		0x180cU
39
/* context size to save during system suspend */
40
#define TEGRA186_SE_CONTEXT_SIZE	3U
41

42
static uint32_t se_regs[TEGRA186_SE_CONTEXT_SIZE];
43
44
45
static struct tegra_psci_percpu_data {
	uint32_t wake_time;
} __aligned(CACHE_WRITEBACK_GRANULE) tegra_percpu_data[PLATFORM_CORE_COUNT];
46

47
int32_t tegra_soc_validate_power_state(uint32_t power_state,
48
					psci_power_state_t *req_state)
49
{
50
51
52
	uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) & TEGRA186_STATE_ID_MASK;
	uint32_t cpu = plat_my_core_pos();
	int32_t ret = PSCI_E_SUCCESS;
53

54
	/* save the core wake time (in TSC ticks)*/
55
	tegra_percpu_data[cpu].wake_time = (power_state & TEGRA186_WAKE_TIME_MASK)
56
			<< TEGRA186_WAKE_TIME_SHIFT;
57

58
59
60
61
62
63
64
	/*
	 * Clean percpu_data[cpu] to DRAM. This needs to be done to ensure that
	 * the correct value is read in tegra_soc_pwr_domain_suspend(), which
	 * is called with caches disabled. It is possible to read a stale value
	 * from DRAM in that function, because the L2 cache is not flushed
	 * unless the cluster is entering CC6/CC7.
	 */
65
66
	clean_dcache_range((uint64_t)&tegra_percpu_data[cpu],
			sizeof(tegra_percpu_data[cpu]));
67

68
69
70
71
	/* Sanity check the requested state id */
	switch (state_id) {
	case PSTATE_ID_CORE_IDLE:
	case PSTATE_ID_CORE_POWERDN:
72
73

		/* Core powerdown request */
74
		req_state->pwr_domain_state[MPIDR_AFFLVL0] = state_id;
75
		req_state->pwr_domain_state[MPIDR_AFFLVL1] = state_id;
76
77
78
79
80

		break;

	default:
		ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
81
82
		ret = PSCI_E_INVALID_PARAMS;
		break;
83
84
	}

85
	return ret;
86
87
}

88
int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
89
90
{
	const plat_local_state_t *pwr_domain_state;
91
92
93
	uint8_t stateid_afflvl0, stateid_afflvl2;
	uint32_t cpu = plat_my_core_pos();
	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
94
	mce_cstate_info_t cstate_info = { 0 };
95
	uint64_t smmu_ctx_base;
96
97
	uint32_t val;

98
99
100
101
	/* get the state ID */
	pwr_domain_state = target_state->pwr_domain_state;
	stateid_afflvl0 = pwr_domain_state[MPIDR_AFFLVL0] &
		TEGRA186_STATE_ID_MASK;
102
103
	stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
		TEGRA186_STATE_ID_MASK;
104

105
106
	if ((stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ||
	    (stateid_afflvl0 == PSTATE_ID_CORE_POWERDN)) {
107

108
109
		/* Enter CPU idle/powerdown */
		val = (stateid_afflvl0 == PSTATE_ID_CORE_IDLE) ?
110
			(uint32_t)TEGRA_ARI_CORE_C6 : (uint32_t)TEGRA_ARI_CORE_C7;
111
112
		(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE, (uint64_t)val,
				tegra_percpu_data[cpu].wake_time, 0U);
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
	} else if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {

		/* save SE registers */
		se_regs[0] = mmio_read_32(TEGRA_SE0_BASE +
				SE_MUTEX_WATCHDOG_NS_LIMIT);
		se_regs[1] = mmio_read_32(TEGRA_RNG1_BASE +
				RNG_MUTEX_WATCHDOG_NS_LIMIT);
		se_regs[2] = mmio_read_32(TEGRA_PKA1_BASE +
				PKA_MUTEX_WATCHDOG_NS_LIMIT);

		/* save 'Secure Boot' Processor Feature Config Register */
		val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG);
		mmio_write_32(TEGRA_SCRATCH_BASE + SECURE_SCRATCH_RSV6, val);

128
129
		/* save SMMU context to TZDRAM */
		smmu_ctx_base = params_from_bl2->tzdram_base +
130
			((uintptr_t)&__tegra186_smmu_context -
131
			 (uintptr_t)&tegra186_cpu_reset_handler);
132
		tegra_smmu_save_context((uintptr_t)smmu_ctx_base);
133
134

		/* Prepare for system suspend */
135
136
		cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
		cstate_info.system = (uint32_t)TEGRA_ARI_SYSTEM_SC7;
137
138
139
		cstate_info.system_state_force = 1;
		cstate_info.update_wake_mask = 1;
		mce_update_cstate_info(&cstate_info);
140
141
		/* Loop until system suspend is allowed */
		do {
142
143
			val = (uint32_t)mce_command_handler(
					(uint64_t)MCE_CMD_IS_SC7_ALLOWED,
144
					(uint64_t)TEGRA_ARI_CORE_C7,
145
					MCE_CORE_SLEEP_TIME_INFINITE,
146
147
					0U);
		} while (val == 0U);
148

149
		/* Instruct the MCE to enter system suspend state */
150
		(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
151
			(uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
152
153
	} else {
		; /* do nothing */
154
155
156
157
	}

	return PSCI_E_SUCCESS;
}
158

159
/*******************************************************************************
160
 * Helper function to check if this is the last ON CPU in the cluster
161
 ******************************************************************************/
162
163
static bool tegra_last_cpu_in_cluster(const plat_local_state_t *states,
			uint32_t ncpu)
164
{
165
166
167
168
169
170
171
172
173
174
175
176
	plat_local_state_t target;
	bool last_on_cpu = true;
	uint32_t num_cpus = ncpu, pos = 0;

	do {
		target = states[pos];
		if (target != PLAT_MAX_OFF_STATE) {
			last_on_cpu = false;
		}
		--num_cpus;
		pos++;
	} while (num_cpus != 0U);
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
	return last_on_cpu;
}

/*******************************************************************************
 * Helper function to get target power state for the cluster
 ******************************************************************************/
static plat_local_state_t tegra_get_afflvl1_pwr_state(const plat_local_state_t *states,
			uint32_t ncpu)
{
	uint32_t core_pos = (uint32_t)read_mpidr() & (uint32_t)MPIDR_CPU_MASK;
	uint32_t cpu = plat_my_core_pos();
	int32_t ret;
	plat_local_state_t target = states[core_pos];
	mce_cstate_info_t cstate_info = { 0 };
192
193

	/* CPU suspend */
194
	if (target == PSTATE_ID_CORE_POWERDN) {
195
196
197
198
199
200
		/* Program default wake mask */
		cstate_info.wake_mask = TEGRA186_CORE_WAKE_MASK;
		cstate_info.update_wake_mask = 1;
		mce_update_cstate_info(&cstate_info);

		/* Check if CCx state is allowed. */
201
		ret = mce_command_handler((uint64_t)MCE_CMD_IS_CCX_ALLOWED,
202
203
				(uint64_t)TEGRA_ARI_CORE_C7,
				tegra_percpu_data[cpu].wake_time,
204
				0U);
205
206
		if (ret == 0) {
			target = PSCI_LOCAL_STATE_RUN;
207
		}
208
209
210
	}

	/* CPU off */
211
	if (target == PLAT_MAX_OFF_STATE) {
212
		/* Enable cluster powerdn from last CPU in the cluster */
213
		if (tegra_last_cpu_in_cluster(states, ncpu)) {
214
			/* Enable CC7 state and turn off wake mask */
215
			cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
216
217
218
219
			cstate_info.update_wake_mask = 1;
			mce_update_cstate_info(&cstate_info);

			/* Check if CCx state is allowed. */
220
			ret = mce_command_handler((uint64_t)MCE_CMD_IS_CCX_ALLOWED,
221
						  (uint64_t)TEGRA_ARI_CORE_C7,
222
						  MCE_CORE_SLEEP_TIME_INFINITE,
223
						  0U);
224
225
			if (ret == 0) {
				target = PSCI_LOCAL_STATE_RUN;
226
			}
227
228
229
230
231
232

		} else {

			/* Turn off wake_mask */
			cstate_info.update_wake_mask = 1;
			mce_update_cstate_info(&cstate_info);
233
			target = PSCI_LOCAL_STATE_RUN;
234
235
236
		}
	}

237
238
239
240
241
242
243
	return target;
}

/*******************************************************************************
 * Platform handler to calculate the proper target power level at the
 * specified affinity level
 ******************************************************************************/
244
plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl,
245
246
247
248
					     const plat_local_state_t *states,
					     uint32_t ncpu)
{
	plat_local_state_t target = PSCI_LOCAL_STATE_RUN;
249
	uint32_t cpu = plat_my_core_pos();
250

251
	/* System Suspend */
252
253
254
255
256
257
258
259
	if ((lvl == (uint32_t)MPIDR_AFFLVL2) &&
	    (states[cpu] == PSTATE_ID_SOC_POWERDN)) {
		target = PSTATE_ID_SOC_POWERDN;
	}

	/* CPU off, CPU suspend */
	if (lvl == (uint32_t)MPIDR_AFFLVL1) {
		target = tegra_get_afflvl1_pwr_state(states, ncpu);
260
	}
261

262
263
	/* target cluster/system state */
	return target;
264
265
}

266
int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state)
267
268
269
{
	const plat_local_state_t *pwr_domain_state =
		target_state->pwr_domain_state;
270
271
	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
	uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
272
		TEGRA186_STATE_ID_MASK;
273
	uint64_t val;
274
275
276
277
278
279
280
281
282

	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
		/*
		 * The TZRAM loses power when we enter system suspend. To
		 * allow graceful exit from system suspend, we need to copy
		 * BL3-1 over to TZDRAM.
		 */
		val = params_from_bl2->tzdram_base +
			((uintptr_t)&__tegra186_cpu_reset_handler_end -
283
			 (uintptr_t)&tegra186_cpu_reset_handler);
284
285
286
287
288
289
290
		memcpy16((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE,
			 (uintptr_t)&__BL31_END__ - (uintptr_t)BL31_BASE);
	}

	return PSCI_E_SUCCESS;
}

291
int32_t tegra_soc_pwr_domain_on(u_register_t mpidr)
292
{
293
	int32_t ret = PSCI_E_SUCCESS;
294
295
296
	uint64_t target_cpu = mpidr & MPIDR_CPU_MASK;
	uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >>
			MPIDR_AFFINITY_BITS;
297

298
	if (target_cluster > MPIDR_AFFLVL1) {
299
300

		ERROR("%s: unsupported CPU (0x%lx)\n", __func__, mpidr);
301
		ret = PSCI_E_NOT_PRESENT;
302

303
304
305
	} else {
		/* construct the target CPU # */
		target_cpu |= (target_cluster << 2);
306

307
308
		(void)mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U);
	}
309

310
	return ret;
311
312
}

313
int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
314
{
315
316
	uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL];
	uint8_t stateid_afflvl0 = target_state->pwr_domain_state[MPIDR_AFFLVL0];
317
	mce_cstate_info_t cstate_info = { 0 };
318
319
320
	uint64_t impl, val;
	const plat_params_from_bl2_t *plat_params = bl31_get_plat_params();

321
	impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
322
323
324
325
326

	/*
	 * Enable ECC and Parity Protection for Cortex-A57 CPUs (Tegra186
	 * A02p and beyond).
	 */
327
	if ((plat_params->l2_ecc_parity_prot_dis != 1) && (impl != DENVER_IMPL)) {
328
329

		val = read_l2ctlr_el1();
330
		val |= CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT;
331
332
		write_l2ctlr_el1(val);
	}
333

334
	/*
335
336
337
338
339
	 * Reset power state info for CPUs when onlining, we set
	 * deepest power when offlining a core but that may not be
	 * requested by non-secure sw which controls idle states. It
	 * will re-init this info from non-secure software when the
	 * core come online.
340
	 */
341
342
	if (stateid_afflvl0 == PLAT_MAX_OFF_STATE) {

343
		cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC1;
344
345
		cstate_info.update_wake_mask = 1;
		mce_update_cstate_info(&cstate_info);
346
	}
347

348
349
350
351
	/*
	 * Check if we are exiting from deep sleep and restore SE
	 * context if we are.
	 */
352
353
	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {

354
355
356
357
358
359
360
361
362
		mmio_write_32(TEGRA_SE0_BASE + SE_MUTEX_WATCHDOG_NS_LIMIT,
			se_regs[0]);
		mmio_write_32(TEGRA_RNG1_BASE + RNG_MUTEX_WATCHDOG_NS_LIMIT,
			se_regs[1]);
		mmio_write_32(TEGRA_PKA1_BASE + PKA_MUTEX_WATCHDOG_NS_LIMIT,
			se_regs[2]);

		/* Init SMMU */
		tegra_smmu_init();
363
364

		/*
365
366
367
368
		 * Reset power state info for the last core doing SC7
		 * entry and exit, we set deepest power state as CC7
		 * and SC7 for SC7 entry which may not be requested by
		 * non-secure SW which controls idle states.
369
		 */
370
371
		cstate_info.cluster = (uint32_t)TEGRA_ARI_CLUSTER_CC7;
		cstate_info.system = (uint32_t)TEGRA_ARI_SYSTEM_SC1;
372
373
		cstate_info.update_wake_mask = 1;
		mce_update_cstate_info(&cstate_info);
374
375
376
377
378
	}

	return PSCI_E_SUCCESS;
}

379
int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
380
{
381
382
383
	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;

	(void)target_state;
384

385
	/* Disable Denver's DCO operations */
386
	if (impl == DENVER_IMPL) {
387
		denver_disable_dco();
388
	}
389

390
	/* Turn off CPU */
391
392
	(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
			(uint64_t)TEGRA_ARI_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
393
394

	return PSCI_E_SUCCESS;
395
}
396
397
398

__dead2 void tegra_soc_prepare_system_off(void)
{
399
	/* power off the entire system */
400
	mce_enter_ccplex_state((uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF);
401
402
403
404
405
406
407

	wfi();

	/* wait for the system to power down */
	for (;;) {
		;
	}
408
}
409

410
int32_t tegra_soc_prepare_system_reset(void)
411
{
412
	mce_enter_ccplex_state((uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT);
413
414
415

	return PSCI_E_SUCCESS;
}