user-guide.md 40.4 KB
Newer Older
1
2
3
4
5
6
ARM Trusted Firmware User Guide
===============================

Contents :

1.  Introduction
7
8
9
10
2.  Host machine requirements
3.  Tools
4.  Building the Trusted Firmware
5.  Obtaining the normal world software
11
12
13
14
6.  Preparing the images to run on FVP
7.  Running the software on FVP
8.  Preparing the images to run on Juno
9.  Running the software on Juno
15
16
17
18


1.  Introduction
----------------
19
This document describes how to build ARM Trusted Firmware and run it with a
20
21
22
23
tested set of other software components using defined configurations on the Juno
ARM development platform and ARM Fixed Virtual Platform (FVP) models. It is
possible to use other software components, configurations and platforms but that
is outside the scope of this document.
24

25
This document should be used in conjunction with the [Firmware Design].
26
27


28
29
2.  Host machine requirements
-----------------------------
30

31
The minimum recommended machine specification for building the software and
32
33
34
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
35

36
The software has been tested on Ubuntu 12.04.04 (64-bit).  Packages used
37
38
for building the software were installed from that distribution unless
otherwise specified.
39
40


41
42
3.  Tools
---------
43
44
45

The following tools are required to use the ARM Trusted Firmware:

46
*   `git` package to obtain source code.
47

48
*   `ia32-libs` package.
49

50
*   `build-essential`, `uuid-dev` and `iasl` packages for building UEFI and the
51
    Firmware Image Package (FIP) tool.
52

53
54
55
56
*   `bc` and `ncurses-dev` packages for building Linux.

*   `device-tree-compiler` package for building the Flattened Device Tree (FDT)
    source files (`.dts` files) provided with this software.
57
58
59

*   Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro]
    [Linaro Toolchain]. The rest of this document assumes that the
60
    `gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz` tools are used.
61

62
63
        wget http://releases.linaro.org/14.07/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
        tar -xf gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
64

65
*   (Optional) For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.19.
66
67


68
69
4.  Building the Trusted Firmware
---------------------------------
70

71
To build the Trusted Firmware images, follow these steps:
72

73
1.  Clone the ARM Trusted Firmware repository from GitHub:
74
75
76
77
78
79
80

        git clone https://github.com/ARM-software/arm-trusted-firmware.git

2.  Change to the trusted firmware directory:

        cd arm-trusted-firmware

81
3.  Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and
82
    a valid platform, and then build:
83

84
85
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        BL33=<path-to>/<bl33_image>                               \
86
        make PLAT=<platform> all fip
87

88
89
90
91
92
93
94
95
96
97
    If `PLAT` is not specified, `fvp` is assumed by default. See the "Summary of
    build options" for more information on available build options.

    The BL3-3 image corresponds to the software that is executed after switching
    to the non-secure world. UEFI can be used as the BL3-3 image. Refer to the
    "Obtaining the normal world software" section below.

    The TSP (Test Secure Payload), corresponding to the BL3-2 image, is not
    compiled in by default. Refer to the "Building the Test Secure Payload"
    section below.
98

99
    By default this produces a release version of the build. To produce a debug
100
    version instead, refer to the "Debugging options" section below.
101

102
103
104
105
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
106

107
108
109
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
110

111
    where `<platform>` is the name of the chosen platform and `<build-type>` is
112
113
114
    either `debug` or `release`. A Firmare Image Package (FIP) will be created
    as part of the build. It contains all boot loader images except for
    `bl1.bin`.
115

116
    *   `build/<platform>/<build-type>/fip.bin`
117

118
119
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
120

121
122
4.  (Optional) Some platforms may require a BL3-0 image to boot. This image can
    be included in the FIP when building the Trusted Firmware by specifying the
123
    `BL30` build option:
124
125
126
127
128
129

        BL30=<path-to>/<bl30_image>

5.  Output binary files `bl1.bin` and `fip.bin` are both required to boot the
    system. How these files are used is platform specific. Refer to the
    platform documentation on how to use the firmware images.
130

131
6.  (Optional) Build products for a specific build variant can be removed using:
132

133
        make DEBUG=<D> PLAT=<platform> clean
134
135
136
137
138
139

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
140

141
142
143
144
145
146
147
148
149
### Summary of build options

ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.

150
151
#### Common build options

152
153
*   `BL30`: Path to BL3-0 image in the host file system. This image is optional.
    If a BL3-0 image is present then this option must be passed for the `fip`
154
    target.
155

156
*   `BL33`: Path to BL33 image in the host file system. This is mandatory for
157
    `fip` target.
158

159
160
*   `CROSS_COMPILE`: Prefix to toolchain binaries. Please refer to examples in
    this document for usage.
161
162

*   `DEBUG`: Chooses between a debug and release build. It can take either 0
163
    (release) or 1 (debug) as values. 0 is the default.
164

165
166
167
168
169
170
171
172
173
174
175
176
177
*   `LOG_LEVEL`: Chooses the log level, which controls the amount of console log
    output compiled into the build. This should be one of the following:

        0  (LOG_LEVEL_NONE)
        10 (LOG_LEVEL_NOTICE)
        20 (LOG_LEVEL_ERROR)
        30 (LOG_LEVEL_WARNING)
        40 (LOG_LEVEL_INFO)
        50 (LOG_LEVEL_VERBOSE)

    All log output up to and including the log level is compiled into the build.
    The default value is 40 in debug builds and 20 in release builds.

178
179
*   `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
    contents upon world switch. It can take either 0 (don't save and restore) or
180
181
    1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
    wants the timer registers to be saved and restored.
182

183
184
*   `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
    platform name must be the name of one of the directories under the `plat/`
185
    directory other than `common`.
186
187
188

*   `SPD`: Choose a Secure Payload Dispatcher component to be built into the
    Trusted Firmware. The value should be the path to the directory containing
189
190
    the SPD source, relative to `services/spd/`; the directory is expected to
    contain a makefile called `<spd-value>.mk`.
191
192

*   `V`: Verbose build. If assigned anything other than 0, the build commands
193
    are printed. Default is 0.
194

195
196
*   `ARM_GIC_ARCH`: Choice of ARM GIC architecture version used by the ARM GIC
    driver for implementing the platform GIC API. This API is used
197
    by the interrupt management framework. Default is 2 (that is, version 2.0).
198

199
200
201
202
203
*   `IMF_READ_INTERRUPT_ID`: Boolean flag used by the interrupt management
    framework to enable passing of the interrupt id to its handler. The id is
    read using a platform GIC API. `INTR_ID_UNAVAILABLE` is passed instead if
    this option set to 0. Default is 0.

204
*   `RESET_TO_BL31`: Enable BL3-1 entrypoint as the CPU reset vector instead
205
206
207
208
    of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
    entrypoint) or 1 (CPU reset to BL3-1 entrypoint).
    The default value is 0.

209
210
211
212
*   `CRASH_REPORTING`: A non-zero value enables a console dump of processor
    register state when an unexpected exception occurs during execution of
    BL3-1. This option defaults to the value of `DEBUG` - i.e. by default
    this is only enabled for a debug build of the firmware.
213

214
215
*   `ASM_ASSERTION`: This flag determines whether the assertion checks within
    assembly source files are enabled or not. This option defaults to the
216
    value of `DEBUG` - that is, by default this is only enabled for a debug
217
218
    build of the firmware.

219
*   `TSP_INIT_ASYNC`: Choose BL3-2 initialization method as asynchronous or
220
221
    synchronous, (see "Initializing a BL3-2 Image" section in [Firmware
    Design]). It can take the value 0 (BL3-2 is initialized using
222
223
224
    synchronous method) or 1 (BL3-2 is initialized using asynchronous method).
    Default is 0.

225
226
227
228
#### FVP specific build options

*   `FVP_SHARED_DATA_LOCATION`: location of the shared memory page. Available
    options:
229
230
    -   `tsram` (default) : top of Trusted SRAM
    -   `tdram` : base of Trusted DRAM
231
232

*   `FVP_TSP_RAM_LOCATION`: location of the TSP binary. Options:
233
234
    -   `tsram` (default) : base of Trusted SRAM
    -   `tdram` : Trusted DRAM (above shared data)
235

236
237
For a better understanding of FVP options, the FVP memory map is explained in
the [Firmware Design].
238

239
240
241
242
243
244
245
246
247
248
249
250
251
252
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

253
Create a Firmware package that contains existing BL2 and BL3-1 images:
254
255
256
257

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
258
       --bl2 build/<platform>/debug/bl2.bin --bl31 build/<platform>/debug/bl31.bin
259
260
261
262

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
263
      file: 'build/<platform>/debug/bl2.bin'
264
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
265
      file: 'build/<platform>/debug/bl31.bin'
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
    ---------------------------

Existing package entries can be individially updated:

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
283
      --bl2 build/<platform>/release/bl2.bin
284
285
286
287

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
288
      file: 'build/<platform>/release/bl2.bin'
289
290
291
292
293
294
    - EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
    ---------------------------
    Updating "fip.bin"


### Debugging options
295
296
297

To compile a debug version and make the build more verbose use

298
299
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
300
    make PLAT=<platform> DEBUG=1 V=1 all fip
301
302
303
304
305
306
307
308
309
310
311

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
312
313
might need to be recalculated (see the "Memory layout of BL images" section in
the [Firmware Design]).
314
315
316

Extra debug options can be passed to the build system by setting `CFLAGS`:

317
318
    CFLAGS='-O0 -gdwarf-2'                                    \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
319
    BL33=<path-to>/<bl33_image>                               \
320
    make PLAT=<platform> DEBUG=1 V=1 all fip
321
322


323
324
325
326
327
328
329
330
331
332
333
334
### Building the Test Secure Payload

The TSP is coupled with a companion runtime service in the BL3-1 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL3-1 image
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].

First clean the Trusted Firmware build directory to get rid of any previous
BL3-1 binary. Then to build the TSP image and include it into the FIP use:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
335
    make PLAT=<platform> SPD=tspd all fip
336
337
338

An additional boot loader binary file is created in the `build` directory:

339
*   `build/<platform>/<build-type>/bl32.bin`
340

341
342
343
The FIP will now contain the additional BL3-2 image. Here is an example
output from an FVP build in release mode including BL3-2 and using
FVP_AARCH64_EFI.fd as BL3-3 image:
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
      file: './build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x60D8, size=0x9000
      file: './build/fvp/release/bl31.bin'
    - Secure Payload BL3-2 (Trusted OS): offset=0xF0D8, size=0x3000
      file: './build/fvp/release/bl32.bin'
    - Non-Trusted Firmware BL3-3: offset=0x120D8, size=0x280000
      file: '../FVP_AARCH64_EFI.fd'
    ---------------------------
    Creating "build/fvp/release/fip.bin"


359
### Checking source code style
360
361
362

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
363
364
the project Makefile contains two targets, which both utilise the
`checkpatch.pl` script that ships with the Linux source tree.
365

366
367
368
To check the entire source tree, you must first download a copy of
`checkpatch.pl` (or the full Linux source), set the `CHECKPATCH` environment
variable to point to the script and build the target checkcodebase:
369

370
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
371
372
373
374

To just check the style on the files that differ between your local branch and
the remote master, use:

375
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
376
377

If you wish to check your patch against something other than the remote master,
378
379
set the `BASE_COMMIT` variable to your desired branch. By default, `BASE_COMMIT`
is set to `origin/master`.
380
381


382
383
5.  Obtaining the normal world software
---------------------------------------
384

385
### Obtaining EDK2
386

387
388
389
Potentially any kind of non-trusted firmware may be used with the ARM Trusted
Firmware but the software has only been tested with the EFI Development Kit 2
(EDK2) open source implementation of the UEFI specification.
390

391
To build the software to be compatible with the Foundation and Base FVPs, or the
392
Juno platform, follow these steps:
393

394
1.  Clone the [EDK2 source code][EDK2] from GitHub:
395

396
        git clone -n https://github.com/tianocore/edk2.git
397

398
399
400
401
402
403
    Not all required features are available in the EDK2 mainline yet. These can
    be obtained from the ARM-software EDK2 repository instead:

        cd edk2
        git remote add -f --tags arm-software https://github.com/ARM-software/edk2.git
        git checkout --detach v1.2
404

405
2.  Copy build config templates to local workspace
406

407
        # in edk2/
408
        . edksetup.sh
409

410
3.  Build the EDK2 host tools
411

412
413
        make -C BaseTools clean
        make -C BaseTools
414

415
4.  Build the EDK2 software
416

417
418
419
420
421
422
423
424
425
426
427
428
    1.  Build for FVP

            GCC49_AARCH64_PREFIX=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
            make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64 \
            EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
            EDK2_TOOLCHAIN=GCC49 EDK2_BUILD=RELEASE \
            EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"

        The EDK2 binary for use with the ARM Trusted Firmware can then be found
        here:

             Build/ArmVExpress-FVP-AArch64/RELEASE_GCC49/FV/FVP_AARCH64_EFI.fd
429

430
    2.  Build for Juno
431

432
433
434
            GCC49_AARCH64_PREFIX=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
            make -f ArmPlatformPkg/ArmJunoPkg/Makefile EDK2_ARCH=AARCH64 \
            EDK2_TOOLCHAIN=GCC49 EDK2_BUILD=RELEASE
435

436
437
        The EDK2 binary for use with the ARM Trusted Firmware can then be found
        here:
438

439
440
441
442
443
444
445
446
447
448
            Build/ArmJuno/RELEASE_GCC49/FV/BL33_AP_UEFI.fd

    The EDK2 binary should be specified as `BL33` in in the `make` command line
    when building the Trusted Firmware. See the "Building the Trusted Firmware"
    section above.

5.  (Optional) To build EDK2 in debug mode, remove `EDK2_BUILD=RELEASE` from the
    command line.

6.  (Optional) To boot Linux using a VirtioBlock file-system, the command line
449
450
    passed from EDK2 to the Linux kernel must be modified as described in the
    "Obtaining a root file-system" section below.
451

452
7.  (Optional) If legacy GICv2 locations are used, the EDK2 platform description
453
454
    must be updated. This is required as EDK2 does not support probing for the
    GIC location. To do this, first clean the EDK2 build directory.
455

456
457
458
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC clean
459

460
    Then rebuild EDK2 as described in step 3, using the following flag:
461

462
463
464
465
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
466

467

468
### Obtaining a Linux kernel
469

470
471
Preparing a Linux kernel for use on the FVPs can be done as follows
(GICv2 support only):
472
473
474
475
476

1.  Clone Linux:

        git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

477
478
    Not all required features are available in the kernel mainline yet. These
    can be obtained from the ARM-software EDK2 repository instead:
479
480

        cd linux
481
482
        git remote add -f --tags arm-software https://github.com/ARM-software/linux.git
        git checkout --detach 1.1-Juno
483
484
485
486
487
488
489

2.  Build with the Linaro GCC tools.

        # in linux/
        make mrproper
        make ARCH=arm64 defconfig

490
491
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        make -j6 ARCH=arm64
492

493
494
495
496
497
The compiled Linux image will now be found at `arch/arm64/boot/Image`.


6.  Preparing the images to run on FVP
--------------------------------------
498

499
### Obtaining the Flattened Device Trees
500
501

Depending on the FVP configuration and Linux configuration used, different
502
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
503
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
504
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
505
and MMC support, and has only one CPU cluster.
506
507
508
509

*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
510
    Base memory map configuration.
511
512
513

*   `fvp-base-gicv2legacy-psci.dtb`

514
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
515
516
517

*   `fvp-base-gicv3-psci.dtb`

518
519
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
520

521
522
523
524
525
526
527
528
529
530
531
532
533
534
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.


535
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
536
is launched. Alternatively a symbolic link may be used.
537

538
539
540
541
542
### Preparing the kernel image

Copy the kernel image file `arch/arm64/boot/Image` to the directory from which
the FVP is launched. Alternatively a symbolic link may be used.

543
### Obtaining a root file-system
544
545
546
547
548

To prepare a Linaro LAMP based Open Embedded file-system, the following
instructions can be used as a guide. The file-system can be provided to Linux
via VirtioBlock or as a RAM-disk. Both methods are described below.

549
#### Prepare VirtioBlock
550
551
552
553
554

To prepare a VirtioBlock file-system, do the following:

1.  Download and unpack the disk image.

555
    NOTE: The unpacked disk image grows to 3 GiB in size.
556

557
558
        wget http://releases.linaro.org/14.07/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.9_20140727-682.img.gz
        gunzip vexpress64-openembedded_lamp-armv8-gcc-4.9_20140727-682.img.gz
559
560
561
562
563
564
565
566
567

2.  Make sure the Linux kernel has Virtio support enabled using
    `make ARCH=arm64 menuconfig`.

        Device Drivers  ---> Virtio drivers  ---> <*> Platform bus driver for memory mapped virtio devices
        Device Drivers  ---> [*] Block devices  --->  <*> Virtio block driver
        File systems    ---> <*> The Extended 4 (ext4) filesystem

    If some of these configurations are missing, enable them, save the kernel
568
569
    configuration, then rebuild the kernel image using the instructions
    provided in the section "Obtaining a Linux kernel".
570
571
572
573
574

3.  Change the Kernel command line to include `root=/dev/vda2`. This can either
    be done in the EDK2 boot menu or in the platform file. Editing the platform
    file and rebuilding EDK2 will make the change persist. To do this:

575
    1.  In EDK2, edit the following file:
576
577
578
579
580
581
582
583
584
585
586
587
588
589

            ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc

    2.  Add `root=/dev/vda2` to:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"

    3.  Remove the entry:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""

    4.  Rebuild EDK2 (see "Obtaining UEFI" section above).

4.  The file-system image file should be provided to the model environment by
590
    passing it the correct command line option. In the FVPs the following
591
    option should be provided in addition to the ones described in the
592
    "Running the software on FVP" section below.
593
594
595
596

    NOTE: A symbolic link to this file cannot be used with the FVP; the path
    to the real file must be provided.

597
    On the Base FVPs:
598

599
        -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
600

601
    On the Foundation FVP:
602

603
        --block-device="<path-to>/<file-system-image>"
604

605
606
607
5.  Ensure that the FVP doesn't output any error messages. If the following
    error message is displayed:

608
        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
609
610
611
612
613

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.

614
#### Prepare RAM-disk
615

616
To prepare a RAM-disk root file-system, do the following:
617
618
619

1.  Download the file-system image:

620
        wget http://releases.linaro.org/14.07/openembedded/aarch64/linaro-image-lamp-genericarmv8-20140727-701.rootfs.tar.gz
621
622
623
624
625
626

2.  Modify the Linaro image:

        # Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock.
        # Be careful, otherwise you could damage your host file-system.
        mkdir tmp; cd tmp
627
        sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20140727-701.rootfs.tar.gz | cpio -id"
628
629
630
631
632
633
        sudo ln -s sbin/init .
        sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab"
        sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz"
        cd ..

3.  Copy the resultant `filesystem.cpio.gz` to the directory where the FVP is
634
    launched from. Alternatively a symbolic link may be used.
635
636


637
638
7.  Running the software on FVP
-------------------------------
639

640
This version of the ARM Trusted Firmware has been tested on the following ARM
641
642
FVPs (64-bit versions only).

643
644
645
646
647
648
649
650
*   `Foundation_v8` (Version 2.1, Build 9.0.24)
*   `FVP_Base_AEMv8A-AEMv8A` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x2-A53x4` (Version 5.8, Build 0.8.5802)

NOTE: The build numbers quoted above are those reported by launching the FVP
with the `--version` parameter.
651
652
653

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
654

655
656
NOTE: The Foundation FVP does not provide a debugger interface.

657
658
659
660
Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the
ARM Trusted Firmware and normal world software behavior is provided below.

661
662
663
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

664
665

### Running on the Foundation FVP with reset to BL1 entrypoint
666
667
668
669
670
671
672

The following `Foundation_v8` parameters should be used to boot Linux with
4 CPUs using the ARM Trusted Firmware.

NOTE: Using the `--block-device` parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).

673
674
675
676
NOTE: The `--data="<path to FIP binary>"@0x8000000` parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).

677
    <path-to>/Foundation_v8                   \
678
679
680
681
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --gicv3                                   \
682
683
684
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
685

686
687
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
688
689
690
691
692
emulation mode.

The memory mapped addresses `0x0` and `0x8000000` correspond to the start of
trusted ROM and NOR FLASH0 respectively.

693
### Notes regarding Base FVP configuration options
694

695
696
Please refer to these notes in the subsequent "Running on the Base FVP"
sections.
697

698
699
700
1.  The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
    Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
    section above).
701

702
703
704
2.  Using `cache_state_modelled=1` makes booting very slow. The software will
    still work (and run much faster) without this option but this will hide any
    cache maintenance defects in the software.
705

706
707
708
3.  Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
    if a Linux RAM-disk file-system is used (see the "Obtaining a root
    file-system" section above).
709

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
4.  Setting the `-C bp.secure_memory` parameter to `1` is only supported on
    Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
    supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
    instructs the FVP to provide some helpful information if a secure memory
    violation occurs.

5.  This and the following notes only apply when the firmware is built with
    the `RESET_TO_BL31` option.

    The `--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>`
    parameter is used to load bootloader images into Base FVP memory (see the
    "Building the Trusted Firmware" section above). The base addresses used
    should match the image base addresses in `platform_def.h` used while linking
    the images. The BL3-2 image is only needed if BL3-1 has been built to expect
    a Secure-EL1 Payload.

6.  The `-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>` parameter, where
    X and Y are the cluster and CPU numbers respectively, is used to set the
    reset vector for each core.

7.  Changing the default value of `FVP_SHARED_DATA_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl31-binary>"@<base-address-of-bl31>` and
    `-C cluster<X>.cpu<X>.RVBAR=@<base-address-of-bl31>`, to the new value of
    `BL31_BASE` in `platform_def.h`.

8.  Changing the default value of `FVP_TSP_RAM_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl32-binary>"@<base-address-of-bl32>` to the new value of
    `BL32_BASE` in `platform_def.h`.
740

741
742
743
744
745
746
747
748

### Running on the AEMv8 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
749

750
751
    <path-to>/FVP_Base_AEMv8A-AEMv8A                       \
    -C pctl.startup=0.0.0.0                                \
752
753
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
754
755
756
757
758
759
760
    -C cluster0.NUM_CORES=4                                \
    -C cluster1.NUM_CORES=4                                \
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
761

762
763
764
765
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
766
767
768
769

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

770
771
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                  \
    -C pctl.startup=0.0.0.0                                \
772
773
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
774
775
776
777
778
    -C cache_state_modelled=1                              \
    -C bp.pl011_uart0.untimed_fifos=1                      \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
779

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
### Running on the AEMv8 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cluster0.NUM_CORES=4                                      \
    -C cluster1.NUM_CORES=4                                      \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
796
797
798
799
800
801
802
803
804
    -C cluster0.cpu0.RVBAR=0x04022000                            \
    -C cluster0.cpu1.RVBAR=0x04022000                            \
    -C cluster0.cpu2.RVBAR=0x04022000                            \
    -C cluster0.cpu3.RVBAR=0x04022000                            \
    -C cluster1.cpu0.RVBAR=0x04022000                            \
    -C cluster1.cpu1.RVBAR=0x04022000                            \
    -C cluster1.cpu2.RVBAR=0x04022000                            \
    -C cluster1.cpu3.RVBAR=0x04022000                            \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04022000    \
805
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04000000    \
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

### Running on the Cortex-A57-A53 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cache_state_modelled=1                                    \
    -C bp.pl011_uart0.untimed_fifos=1                            \
823
824
825
826
827
828
829
830
831
    -C cluster0.cpu0.RVBARADDR=0x04022000                        \
    -C cluster0.cpu1.RVBARADDR=0x04022000                        \
    -C cluster0.cpu2.RVBARADDR=0x04022000                        \
    -C cluster0.cpu3.RVBARADDR=0x04022000                        \
    -C cluster1.cpu0.RVBARADDR=0x04022000                        \
    -C cluster1.cpu1.RVBARADDR=0x04022000                        \
    -C cluster1.cpu2.RVBARADDR=0x04022000                        \
    -C cluster1.cpu3.RVBARADDR=0x04022000                        \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04022000    \
832
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04000000    \
833
834
835
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

836
837
838
### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
839
840
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
841
842
843
844
845
846

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

847
The AEMv8 Base FVP can be configured to support GICv2 at addresses
848
849
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
850
851
852
853
854
855

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

856
857
858
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
859
860
861

*   `SYS_ID.Build[15:12]`

862
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
863
    default value on the Base FVPs.
864
865
866

*   `SYS_ID.Build[15:12]`

867
868
869
870
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
871

872
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and
873
BL3-3 images should be used.
874

875
876
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

877
878
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
879

880
881
882
883
884
885
886
887
    <path-to>/Foundation_v8                   \
    --cores=4                                 \
    --no-secure-memory                        \
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
888
889
890

Explicit configuration of the `SYS_ID` register is not required.

891
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
892

893
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
894
895
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
896
897
898
899
900
901
902
903
904
905
906
907
908
909

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
910
    -C bp.variant=0x0
911

912
913
914
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
915
916


917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
8.  Preparing the images to run on Juno
---------------------------------------

### Preparing Trusted Firmware images

The Juno platform requires a BL3-0 image to boot up. This image contains the
runtime firmware that runs on the SCP (System Control Processor). It can be
downloaded from the [ARM Silver SCP website] (requires registration).

Rebuild the Trusted Firmware specifying the BL3-0 image. Refer to the section
"Building the Trusted Firmware". Alternatively, the FIP image can be updated
manually with the BL3-0 image:

    fip_create --dump --bl30 <path-to>/<bl30-binary> <path-to>/<FIP-binary>

### Obtaining the Flattened Device Tree

Juno's device tree blob is built along with the kernel. It is located in:

    <path-to-linux>/arch/arm64/boot/dts/juno.dtb

### Deploying a root filesystem on a USB mass storage device

1.  Format the partition on the USB mass storage as ext4 filesystem.

    A 2GB or larger USB mass storage device is required. If another filesystem
    type is preferred then support needs to be enabled in the kernel. For
    example, if the USB mass storage corresponds to /dev/sdb device on your
    computer, use the following command to format partition 1 as ext4:

        sudo mkfs.ext4 /dev/sdb1

    Note: Please be cautious with this command as it could format your hard
    drive instead if you specify the wrong device.

2.  Mount the USB mass storage on the computer (if not done automatically):

        sudo mount /dev/sdb1 /media/usb_storage

    where '/media/usb_storage' corresponds to the mount point (the directory
    must exist prior to using the mount command).

3.  Download the rootfs specified in section "Prepare RAM-disk" and extract the
    files as root user onto the formatted partition:

        sudo tar zxf <linaro-image>.tar.gz -C /media/usb_storage/

    Note: It is not necessary to modify the Linaro image as described in that
    section since we are not using a RAM-disk.

5.  Unmount the USB mass storage:

        sudo umount /media/usb_storage


9.  Running the software on Juno
--------------------------------

The steps to install and run the binaries on Juno are as follows:

1.  Connect a serial cable to the UART0 port (the top UART port on the back
    panel). The UART settings are 115200 bauds, 8 bits data, no parity, 1 stop
    bit.

2.  Mount the Juno board storage via the CONFIG USB port

    This is the only USB type B port on the board, labelled DBG_USB and located
    on the back panel next to the ON/OFF and HW RESET buttons. Plug a type B USB
    cable into this port on the Juno board and plug the other end into a host
    PC, and then issue the following command in the UART0 session:

        Cmd> usb_on

    If the board doesn't show the Cmd> prompt then press the black HW RESET
    button once. Once the Juno board storage is detected by your PC, mount it
    (if not automatically done by your operating system).

        mount /dev/sdbX /media/JUNO

    For the rest of the installation instructions, we will assume that the Juno
    board storage has been mounted under the /media/JUNO directory.

3.  Copy the files obtained from the build process into /media/JUNO/SOFTWARE:

        bl1.bin
        fip.bin
        Image
        juno.dtb

4.  Umount the Juno board storage

        umount /media/JUNO

5.  Reboot the board. In the UART0 session, type:

        Cmd> reboot


1015
1016
- - - - - - - - - - - - - - - - - - - - - - - - - -

1017
_Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved._
1018
1019


1020
[Firmware Design]:  ./firmware-design.md
1021

1022
1023
1024
1025
1026
[ARM FVP website]:         http://www.arm.com/fvp
[ARM Silver SCP website]:  https://silver.arm.com/download/download.tm?pv=1764630
[Linaro Toolchain]:        http://releases.linaro.org/14.07/components/toolchain/binaries/
[EDK2]:                    http://github.com/tianocore/edk2
[DS-5]:                    http://www.arm.com/products/tools/software-tools/ds-5/index.php