suspend.c 22.3 KB
Newer Older
1
2
3
/*
 * Copyright (c) 2016, ARM Limited and Contributors. All rights reserved.
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
 */
6

7
8
#include <platform_def.h>

9
#include <arch_helpers.h>
10
11
#include <common/debug.h>

12
#include <dram.h>
13
#include <plat_private.h>
14
15
#include <pmu.h>
#include <pmu_bits.h>
16
17
#include <pmu_regs.h>
#include <rk3399_def.h>
18
#include <secure.h>
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include <soc.h>
#include <suspend.h>

#define PMUGRF_OS_REG0			0x300
#define PMUGRF_OS_REG1			0x304
#define PMUGRF_OS_REG2			0x308
#define PMUGRF_OS_REG3			0x30c

#define CRU_SFTRST_DDR_CTRL(ch, n)	((0x1 << (8 + 16 + (ch) * 4)) | \
					 ((n) << (8 + (ch) * 4)))
#define CRU_SFTRST_DDR_PHY(ch, n)	((0x1 << (9 + 16 + (ch) * 4)) | \
					 ((n) << (9 + (ch) * 4)))

#define FBDIV_ENC(n)			((n) << 16)
#define FBDIV_DEC(n)			(((n) >> 16) & 0xfff)
#define POSTDIV2_ENC(n)			((n) << 12)
#define POSTDIV2_DEC(n)			(((n) >> 12) & 0x7)
#define POSTDIV1_ENC(n)			((n) << 8)
#define POSTDIV1_DEC(n)			(((n) >> 8) & 0x7)
#define REFDIV_ENC(n)			(n)
#define REFDIV_DEC(n)			((n) & 0x3f)

/* PMU CRU */
#define PMUCRU_RSTNHOLD_CON0		0x120
#define PMUCRU_RSTNHOLD_CON1		0x124

#define PRESET_GPIO0_HOLD(n)		(((n) << 7) | WMSK_BIT(7))
#define PRESET_GPIO1_HOLD(n)		(((n) << 8) | WMSK_BIT(8))

#define SYS_COUNTER_FREQ_IN_MHZ		(SYS_COUNTER_FREQ_IN_TICKS / 1000000)

50
51
52
__pmusramdata uint32_t dpll_data[PLL_CON_COUNT];
__pmusramdata uint32_t cru_clksel_con6;

53
54
55
/*
 * Copy @num registers from @src to @dst
 */
56
57
static __pmusramfunc void sram_regcpy(uintptr_t dst, uintptr_t src,
		uint32_t num)
58
59
60
61
62
63
64
65
{
	while (num--) {
		mmio_write_32(dst, mmio_read_32(src));
		dst += sizeof(uint32_t);
		src += sizeof(uint32_t);
	}
}

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/*
 * Copy @num registers from @src to @dst
 * This is intentionally a copy of the sram_regcpy function. PMUSRAM functions
 * cannot be called from code running in DRAM.
 */
static void dram_regcpy(uintptr_t dst, uintptr_t src, uint32_t num)
{
	while (num--) {
		mmio_write_32(dst, mmio_read_32(src));
		dst += sizeof(uint32_t);
		src += sizeof(uint32_t);
	}
}

static __pmusramfunc uint32_t sram_get_timer_value(void)
81
82
83
84
85
86
87
88
89
{
	/*
	 * Generic delay timer implementation expects the timer to be a down
	 * counter. We apply bitwise NOT operator to the tick values returned
	 * by read_cntpct_el0() to simulate the down counter.
	 */
	return (uint32_t)(~read_cntpct_el0());
}

90
static __pmusramfunc void sram_udelay(uint32_t usec)
91
{
92
	uint32_t start, cnt, delta, total_ticks;
93
94
95

	/* counter is decreasing */
	start = sram_get_timer_value();
96
	total_ticks = usec * SYS_COUNTER_FREQ_IN_MHZ;
97
98
99
100
101
102
103
	do {
		cnt = sram_get_timer_value();
		if (cnt > start) {
			delta = UINT32_MAX - cnt;
			delta += start;
		} else
			delta = start - cnt;
104
	} while (delta <= total_ticks);
105
106
}

107
static __pmusramfunc void configure_sgrf(void)
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
{
	/*
	 * SGRF_DDR_RGN_DPLL_CLK and SGRF_DDR_RGN_RTC_CLK:
	 * IC ECO bug, need to set this register.
	 *
	 * SGRF_DDR_RGN_BYPS:
	 * After the PD_CENTER suspend/resume, the DDR region
	 * related registers in the SGRF will be reset, we
	 * need to re-initialize them.
	 */
	mmio_write_32(SGRF_BASE + SGRF_DDRRGN_CON0_16(16),
		      SGRF_DDR_RGN_DPLL_CLK |
		      SGRF_DDR_RGN_RTC_CLK |
		      SGRF_DDR_RGN_BYPS);
}

124
static __pmusramfunc void rkclk_ddr_reset(uint32_t channel, uint32_t ctl,
125
126
127
128
129
130
131
132
133
134
		uint32_t phy)
{
	channel &= 0x1;
	ctl &= 0x1;
	phy &= 0x1;
	mmio_write_32(CRU_BASE + CRU_SOFTRST_CON(4),
		      CRU_SFTRST_DDR_CTRL(channel, ctl) |
		      CRU_SFTRST_DDR_PHY(channel, phy));
}

135
static __pmusramfunc void phy_pctrl_reset(uint32_t ch)
136
137
138
139
140
141
142
143
144
{
	rkclk_ddr_reset(ch, 1, 1);
	sram_udelay(10);
	rkclk_ddr_reset(ch, 1, 0);
	sram_udelay(10);
	rkclk_ddr_reset(ch, 0, 0);
	sram_udelay(10);
}

145
static __pmusramfunc void set_cs_training_index(uint32_t ch, uint32_t rank)
146
{
147
148
	uint32_t byte;

149
	/* PHY_8/136/264/392 phy_per_cs_training_index_X 1bit offset_24 */
150
151
152
	for (byte = 0; byte < 4; byte++)
		mmio_clrsetbits_32(PHY_REG(ch, 8 + (128 * byte)), 0x1 << 24,
				   rank << 24);
153
154
}

155
156
static __pmusramfunc void select_per_cs_training_index(uint32_t ch,
		uint32_t rank)
157
158
159
160
161
162
{
	/* PHY_84 PHY_PER_CS_TRAINING_EN_0 1bit offset_16 */
	if ((mmio_read_32(PHY_REG(ch, 84)) >> 16) & 1)
		set_cs_training_index(ch, rank);
}

163
static __pmusramfunc void override_write_leveling_value(uint32_t ch)
164
165
166
{
	uint32_t byte;

167
168
169
170
171
172
173
	for (byte = 0; byte < 4; byte++) {
		/*
		 * PHY_8/136/264/392
		 * phy_per_cs_training_multicast_en_X 1bit offset_16
		 */
		mmio_clrsetbits_32(PHY_REG(ch, 8 + (128 * byte)), 0x1 << 16,
				   1 << 16);
174
		mmio_clrsetbits_32(PHY_REG(ch, 63 + (128 * byte)),
175
				   0xffffu << 16,
176
				   0x200 << 16);
177
	}
178
179
180
181
182

	/* CTL_200 ctrlupd_req 1bit offset_8 */
	mmio_clrsetbits_32(CTL_REG(ch, 200), 0x1 << 8, 0x1 << 8);
}

183
static __pmusramfunc int data_training(uint32_t ch,
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
		struct rk3399_sdram_params *sdram_params,
		uint32_t training_flag)
{
	uint32_t obs_0, obs_1, obs_2, obs_3, obs_err = 0;
	uint32_t rank = sdram_params->ch[ch].rank;
	uint32_t rank_mask;
	uint32_t i, tmp;

	if (sdram_params->dramtype == LPDDR4)
		rank_mask = (rank == 1) ? 0x5 : 0xf;
	else
		rank_mask = (rank == 1) ? 0x1 : 0x3;

	/* PHY_927 PHY_PAD_DQS_DRIVE  RPULL offset_22 */
	mmio_setbits_32(PHY_REG(ch, 927), (1 << 22));

	if (training_flag == PI_FULL_TRAINING) {
		if (sdram_params->dramtype == LPDDR4) {
			training_flag = PI_WRITE_LEVELING |
					PI_READ_GATE_TRAINING |
					PI_READ_LEVELING |
					PI_WDQ_LEVELING;
		} else if (sdram_params->dramtype == LPDDR3) {
			training_flag = PI_CA_TRAINING | PI_WRITE_LEVELING |
					PI_READ_GATE_TRAINING;
		} else if (sdram_params->dramtype == DDR3) {
			training_flag = PI_WRITE_LEVELING |
					PI_READ_GATE_TRAINING |
					PI_READ_LEVELING;
		}
	}

	/* ca training(LPDDR4,LPDDR3 support) */
	if ((training_flag & PI_CA_TRAINING) == PI_CA_TRAINING) {
		for (i = 0; i < 4; i++) {
			if (!(rank_mask & (1 << i)))
				continue;

			select_per_cs_training_index(ch, i);
			/* PI_100 PI_CALVL_EN:RW:8:2 */
			mmio_clrsetbits_32(PI_REG(ch, 100), 0x3 << 8, 0x2 << 8);

			/* PI_92 PI_CALVL_REQ:WR:16:1,PI_CALVL_CS:RW:24:2 */
			mmio_clrsetbits_32(PI_REG(ch, 92),
					   (0x1 << 16) | (0x3 << 24),
					   (0x1 << 16) | (i << 24));
			while (1) {
				/* PI_174 PI_INT_STATUS:RD:8:18 */
				tmp = mmio_read_32(PI_REG(ch, 174)) >> 8;

				/*
				 * check status obs
				 * PHY_532/660/788 phy_adr_calvl_obs1_:0:32
				 */
				obs_0 = mmio_read_32(PHY_REG(ch, 532));
				obs_1 = mmio_read_32(PHY_REG(ch, 660));
				obs_2 = mmio_read_32(PHY_REG(ch, 788));
				if (((obs_0 >> 30) & 0x3) ||
				    ((obs_1 >> 30) & 0x3) ||
				    ((obs_2 >> 30) & 0x3))
					obs_err = 1;
				if ((((tmp >> 11) & 0x1) == 0x1) &&
				    (((tmp >> 13) & 0x1) == 0x1) &&
				    (((tmp >> 5) & 0x1) == 0x0) &&
				    (obs_err == 0))
					break;
				else if ((((tmp >> 5) & 0x1) == 0x1) ||
					 (obs_err == 1))
					return -1;
			}
			/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
			mmio_write_32(PI_REG(ch, 175), 0x00003f7c);
		}
		mmio_clrbits_32(PI_REG(ch, 100), 0x3 << 8);
	}

	/* write leveling(LPDDR4,LPDDR3,DDR3 support) */
	if ((training_flag & PI_WRITE_LEVELING) == PI_WRITE_LEVELING) {
		for (i = 0; i < rank; i++) {
			select_per_cs_training_index(ch, i);
			/* PI_60 PI_WRLVL_EN:RW:8:2 */
			mmio_clrsetbits_32(PI_REG(ch, 60), 0x3 << 8, 0x2 << 8);
			/* PI_59 PI_WRLVL_REQ:WR:8:1,PI_WRLVL_CS:RW:16:2 */
			mmio_clrsetbits_32(PI_REG(ch, 59),
					   (0x1 << 8) | (0x3 << 16),
					   (0x1 << 8) | (i << 16));

			while (1) {
				/* PI_174 PI_INT_STATUS:RD:8:18 */
				tmp = mmio_read_32(PI_REG(ch, 174)) >> 8;

				/*
				 * check status obs, if error maybe can not
				 * get leveling done PHY_40/168/296/424
				 * phy_wrlvl_status_obs_X:0:13
				 */
				obs_0 = mmio_read_32(PHY_REG(ch, 40));
				obs_1 = mmio_read_32(PHY_REG(ch, 168));
				obs_2 = mmio_read_32(PHY_REG(ch, 296));
				obs_3 = mmio_read_32(PHY_REG(ch, 424));
				if (((obs_0 >> 12) & 0x1) ||
				    ((obs_1 >> 12) & 0x1) ||
				    ((obs_2 >> 12) & 0x1) ||
				    ((obs_3 >> 12) & 0x1))
					obs_err = 1;
				if ((((tmp >> 10) & 0x1) == 0x1) &&
				    (((tmp >> 13) & 0x1) == 0x1) &&
				    (((tmp >> 4) & 0x1) == 0x0) &&
				    (obs_err == 0))
					break;
				else if ((((tmp >> 4) & 0x1) == 0x1) ||
					 (obs_err == 1))
					return -1;
			}

			/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
			mmio_write_32(PI_REG(ch, 175), 0x00003f7c);
		}
		override_write_leveling_value(ch);
		mmio_clrbits_32(PI_REG(ch, 60), 0x3 << 8);
	}

	/* read gate training(LPDDR4,LPDDR3,DDR3 support) */
	if ((training_flag & PI_READ_GATE_TRAINING) == PI_READ_GATE_TRAINING) {
		for (i = 0; i < rank; i++) {
			select_per_cs_training_index(ch, i);
			/* PI_80 PI_RDLVL_GATE_EN:RW:24:2 */
			mmio_clrsetbits_32(PI_REG(ch, 80), 0x3 << 24,
					   0x2 << 24);
			/*
			 * PI_74 PI_RDLVL_GATE_REQ:WR:16:1
			 * PI_RDLVL_CS:RW:24:2
			 */
			mmio_clrsetbits_32(PI_REG(ch, 74),
					   (0x1 << 16) | (0x3 << 24),
					   (0x1 << 16) | (i << 24));

			while (1) {
				/* PI_174 PI_INT_STATUS:RD:8:18 */
				tmp = mmio_read_32(PI_REG(ch, 174)) >> 8;

				/*
				 * check status obs
				 * PHY_43/171/299/427
				 *     PHY_GTLVL_STATUS_OBS_x:16:8
				 */
				obs_0 = mmio_read_32(PHY_REG(ch, 43));
				obs_1 = mmio_read_32(PHY_REG(ch, 171));
				obs_2 = mmio_read_32(PHY_REG(ch, 299));
				obs_3 = mmio_read_32(PHY_REG(ch, 427));
				if (((obs_0 >> (16 + 6)) & 0x3) ||
				    ((obs_1 >> (16 + 6)) & 0x3) ||
				    ((obs_2 >> (16 + 6)) & 0x3) ||
				    ((obs_3 >> (16 + 6)) & 0x3))
					obs_err = 1;
				if ((((tmp >> 9) & 0x1) == 0x1) &&
				    (((tmp >> 13) & 0x1) == 0x1) &&
				    (((tmp >> 3) & 0x1) == 0x0) &&
				    (obs_err == 0))
					break;
				else if ((((tmp >> 3) & 0x1) == 0x1) ||
					 (obs_err == 1))
					return -1;
			}
			/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
			mmio_write_32(PI_REG(ch, 175), 0x00003f7c);
		}
		mmio_clrbits_32(PI_REG(ch, 80), 0x3 << 24);
	}

	/* read leveling(LPDDR4,LPDDR3,DDR3 support) */
	if ((training_flag & PI_READ_LEVELING) == PI_READ_LEVELING) {
		for (i = 0; i < rank; i++) {
			select_per_cs_training_index(ch, i);
			/* PI_80 PI_RDLVL_EN:RW:16:2 */
			mmio_clrsetbits_32(PI_REG(ch, 80), 0x3 << 16,
					   0x2 << 16);
			/* PI_74 PI_RDLVL_REQ:WR:8:1,PI_RDLVL_CS:RW:24:2 */
			mmio_clrsetbits_32(PI_REG(ch, 74),
					   (0x1 << 8) | (0x3 << 24),
					   (0x1 << 8) | (i << 24));
			while (1) {
				/* PI_174 PI_INT_STATUS:RD:8:18 */
				tmp = mmio_read_32(PI_REG(ch, 174)) >> 8;

				/*
				 * make sure status obs not report error bit
				 * PHY_46/174/302/430
				 *     phy_rdlvl_status_obs_X:16:8
				 */
				if ((((tmp >> 8) & 0x1) == 0x1) &&
				    (((tmp >> 13) & 0x1) == 0x1) &&
				    (((tmp >> 2) & 0x1) == 0x0))
					break;
				else if (((tmp >> 2) & 0x1) == 0x1)
					return -1;
			}
			/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
			mmio_write_32(PI_REG(ch, 175), 0x00003f7c);
		}
		mmio_clrbits_32(PI_REG(ch, 80), 0x3 << 16);
	}

	/* wdq leveling(LPDDR4 support) */
	if ((training_flag & PI_WDQ_LEVELING) == PI_WDQ_LEVELING) {
		for (i = 0; i < 4; i++) {
			if (!(rank_mask & (1 << i)))
				continue;

			select_per_cs_training_index(ch, i);
			/*
			 * disable PI_WDQLVL_VREF_EN before wdq leveling?
			 * PI_181 PI_WDQLVL_VREF_EN:RW:8:1
			 */
			mmio_clrbits_32(PI_REG(ch, 181), 0x1 << 8);
			/* PI_124 PI_WDQLVL_EN:RW:16:2 */
			mmio_clrsetbits_32(PI_REG(ch, 124), 0x3 << 16,
					   0x2 << 16);
			/* PI_121 PI_WDQLVL_REQ:WR:8:1,PI_WDQLVL_CS:RW:16:2 */
			mmio_clrsetbits_32(PI_REG(ch, 121),
					   (0x1 << 8) | (0x3 << 16),
					   (0x1 << 8) | (i << 16));
			while (1) {
				/* PI_174 PI_INT_STATUS:RD:8:18 */
				tmp = mmio_read_32(PI_REG(ch, 174)) >> 8;
				if ((((tmp >> 12) & 0x1) == 0x1) &&
				    (((tmp >> 13) & 0x1) == 0x1) &&
				    (((tmp >> 6) & 0x1) == 0x0))
					break;
				else if (((tmp >> 6) & 0x1) == 0x1)
					return -1;
			}
			/* clear interrupt,PI_175 PI_INT_ACK:WR:0:17 */
			mmio_write_32(PI_REG(ch, 175), 0x00003f7c);
		}
		mmio_clrbits_32(PI_REG(ch, 124), 0x3 << 16);
	}

	/* PHY_927 PHY_PAD_DQS_DRIVE  RPULL offset_22 */
	mmio_clrbits_32(PHY_REG(ch, 927), (1 << 22));

	return 0;
}

428
429
static __pmusramfunc void set_ddrconfig(
		struct rk3399_sdram_params *sdram_params,
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
		unsigned char channel, uint32_t ddrconfig)
{
	/* only need to set ddrconfig */
	struct rk3399_sdram_channel *ch = &sdram_params->ch[channel];
	unsigned int cs0_cap = 0;
	unsigned int cs1_cap = 0;

	cs0_cap = (1 << (ch->cs0_row + ch->col + ch->bk + ch->bw - 20));
	if (ch->rank > 1)
		cs1_cap = cs0_cap >> (ch->cs0_row - ch->cs1_row);
	if (ch->row_3_4) {
		cs0_cap = cs0_cap * 3 / 4;
		cs1_cap = cs1_cap * 3 / 4;
	}

	mmio_write_32(MSCH_BASE(channel) + MSCH_DEVICECONF,
		      ddrconfig | (ddrconfig << 6));
	mmio_write_32(MSCH_BASE(channel) + MSCH_DEVICESIZE,
		      ((cs0_cap / 32) & 0xff) | (((cs1_cap / 32) & 0xff) << 8));
}

451
452
static __pmusramfunc void dram_all_config(
		struct rk3399_sdram_params *sdram_params)
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
{
	unsigned int i;

	for (i = 0; i < 2; i++) {
		struct rk3399_sdram_channel *info = &sdram_params->ch[i];
		struct rk3399_msch_timings *noc = &info->noc_timings;

		if (sdram_params->ch[i].col == 0)
			continue;

		mmio_write_32(MSCH_BASE(i) + MSCH_DDRTIMINGA0,
			      noc->ddrtiminga0.d32);
		mmio_write_32(MSCH_BASE(i) + MSCH_DDRTIMINGB0,
			      noc->ddrtimingb0.d32);
		mmio_write_32(MSCH_BASE(i) + MSCH_DDRTIMINGC0,
			      noc->ddrtimingc0.d32);
		mmio_write_32(MSCH_BASE(i) + MSCH_DEVTODEV0,
			      noc->devtodev0.d32);
		mmio_write_32(MSCH_BASE(i) + MSCH_DDRMODE, noc->ddrmode.d32);

		/* rank 1 memory clock disable (dfi_dram_clk_disable = 1) */
		if (sdram_params->ch[i].rank == 1)
			mmio_setbits_32(CTL_REG(i, 276), 1 << 17);
	}

	DDR_STRIDE(sdram_params->stride);

	/* reboot hold register set */
	mmio_write_32(PMUCRU_BASE + CRU_PMU_RSTHOLD_CON(1),
		      CRU_PMU_SGRF_RST_RLS |
		      PRESET_GPIO0_HOLD(1) |
		      PRESET_GPIO1_HOLD(1));
	mmio_clrsetbits_32(CRU_BASE + CRU_GLB_RST_CON, 0x3, 0x3);
}

488
static __pmusramfunc void pctl_cfg(uint32_t ch,
489
490
491
492
		struct rk3399_sdram_params *sdram_params)
{
	const uint32_t *params_ctl = sdram_params->pctl_regs.denali_ctl;
	const uint32_t *params_pi = sdram_params->pi_regs.denali_pi;
493
494
	const struct rk3399_ddr_publ_regs *phy_regs = &sdram_params->phy_regs;
	uint32_t tmp, tmp1, tmp2, i;
495
496
497
498
499
500
501
502
503
504
505

	/*
	 * Workaround controller bug:
	 * Do not program DRAM_CLASS until NO_PHY_IND_TRAIN_INT is programmed
	 */
	sram_regcpy(CTL_REG(ch, 1), (uintptr_t)&params_ctl[1],
		    CTL_REG_NUM - 1);
	mmio_write_32(CTL_REG(ch, 0), params_ctl[0]);
	sram_regcpy(PI_REG(ch, 0), (uintptr_t)&params_pi[0],
		    PI_REG_NUM);

506
507
	sram_regcpy(PHY_REG(ch, 910), (uintptr_t)&phy_regs->phy896[910 - 896],
		    3);
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

	mmio_clrsetbits_32(CTL_REG(ch, 68), PWRUP_SREFRESH_EXIT,
				PWRUP_SREFRESH_EXIT);

	/* PHY_DLL_RST_EN */
	mmio_clrsetbits_32(PHY_REG(ch, 957), 0x3 << 24, 1 << 24);
	dmbst();

	mmio_setbits_32(PI_REG(ch, 0), START);
	mmio_setbits_32(CTL_REG(ch, 0), START);

	/* wait lock */
	while (1) {
		tmp = mmio_read_32(PHY_REG(ch, 920));
		tmp1 = mmio_read_32(PHY_REG(ch, 921));
		tmp2 = mmio_read_32(PHY_REG(ch, 922));
		if ((((tmp >> 16) & 0x1) == 0x1) &&
		     (((tmp1 >> 16) & 0x1) == 0x1) &&
		     (((tmp1 >> 0) & 0x1) == 0x1) &&
		     (((tmp2 >> 0) & 0x1) == 0x1))
			break;
		/* if PLL bypass,don't need wait lock */
		if (mmio_read_32(PHY_REG(ch, 911)) & 0x1)
			break;
	}

534
535
536
537
	sram_regcpy(PHY_REG(ch, 896), (uintptr_t)&phy_regs->phy896[0], 63);

	for (i = 0; i < 4; i++)
		sram_regcpy(PHY_REG(ch, 128 * i),
538
			    (uintptr_t)&phy_regs->phy0[0], 91);
539
540
541
542

	for (i = 0; i < 3; i++)
		sram_regcpy(PHY_REG(ch, 512 + 128 * i),
				(uintptr_t)&phy_regs->phy512[i][0], 38);
543
544
}

545
static __pmusramfunc int dram_switch_to_next_index(
546
547
548
		struct rk3399_sdram_params *sdram_params)
{
	uint32_t ch, ch_count;
549
	uint32_t fn = ((mmio_read_32(CTL_REG(0, 111)) >> 16) + 1) & 0x1;
550
551
552

	mmio_write_32(CIC_BASE + CIC_CTRL0,
		      (((0x3 << 4) | (1 << 2) | 1) << 16) |
553
		      (fn << 4) | (1 << 2) | 1);
554
555
556
557
558
559
560
561
562
563
564
565
	while (!(mmio_read_32(CIC_BASE + CIC_STATUS0) & (1 << 2)))
		;

	mmio_write_32(CIC_BASE + CIC_CTRL0, 0x20002);
	while (!(mmio_read_32(CIC_BASE + CIC_STATUS0) & (1 << 0)))
		;

	ch_count = sdram_params->num_channels;

	/* LPDDR4 f2 cann't do training, all training will fail */
	for (ch = 0; ch < ch_count; ch++) {
		mmio_clrsetbits_32(PHY_REG(ch, 896), (0x3 << 8) | 1,
566
				   fn << 8);
567
568
569
570
571
572
573
574
575
576
577
578
579

		/* data_training failed */
		if (data_training(ch, sdram_params, PI_FULL_TRAINING))
			return -1;
	}

	return 0;
}

/*
 * Needs to be done for both channels at once in case of a shared reset signal
 * between channels.
 */
580
static __pmusramfunc int pctl_start(uint32_t channel_mask,
581
582
583
		struct rk3399_sdram_params *sdram_params)
{
	uint32_t count;
584
	uint32_t byte;
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

	mmio_setbits_32(CTL_REG(0, 68), PWRUP_SREFRESH_EXIT);
	mmio_setbits_32(CTL_REG(1, 68), PWRUP_SREFRESH_EXIT);

	/* need de-access IO retention before controller START */
	if (channel_mask & (1 << 0))
		mmio_setbits_32(PMU_BASE + PMU_PWRMODE_CON, (1 << 19));
	if (channel_mask & (1 << 1))
		mmio_setbits_32(PMU_BASE + PMU_PWRMODE_CON, (1 << 23));

	/* PHY_DLL_RST_EN */
	if (channel_mask & (1 << 0))
		mmio_clrsetbits_32(PHY_REG(0, 957), 0x3 << 24,
				   0x2 << 24);
	if (channel_mask & (1 << 1))
		mmio_clrsetbits_32(PHY_REG(1, 957), 0x3 << 24,
				   0x2 << 24);

	/* check ERROR bit */
	if (channel_mask & (1 << 0)) {
		count = 0;
		while (!(mmio_read_32(CTL_REG(0, 203)) & (1 << 3))) {
			/* CKE is low, loop 10ms */
			if (count > 100)
				return -1;

			sram_udelay(100);
			count++;
		}

		mmio_clrbits_32(CTL_REG(0, 68), PWRUP_SREFRESH_EXIT);
616
617
618
619
620
621

		/* Restore the PHY_RX_CAL_DQS value */
		for (byte = 0; byte < 4; byte++)
			mmio_clrsetbits_32(PHY_REG(0, 57 + 128 * byte),
					   0xfff << 16,
					   sdram_params->rx_cal_dqs[0][byte]);
622
623
624
625
626
627
628
629
630
631
632
633
634
	}
	if (channel_mask & (1 << 1)) {
		count = 0;
		while (!(mmio_read_32(CTL_REG(1, 203)) & (1 << 3))) {
			/* CKE is low, loop 10ms */
			if (count > 100)
				return -1;

			sram_udelay(100);
			count++;
		}

		mmio_clrbits_32(CTL_REG(1, 68), PWRUP_SREFRESH_EXIT);
635
636
637
638
639
640

		/* Restore the PHY_RX_CAL_DQS value */
		for (byte = 0; byte < 4; byte++)
			mmio_clrsetbits_32(PHY_REG(1, 57 + 128 * byte),
					   0xfff << 16,
					   sdram_params->rx_cal_dqs[1][byte]);
641
642
643
644
645
	}

	return 0;
}

646
647
648
649
650
651
652
653
654
655
656
657
658
__pmusramfunc static void pmusram_restore_pll(int pll_id, uint32_t *src)
{
	mmio_write_32((CRU_BASE + CRU_PLL_CON(pll_id, 3)), PLL_SLOW_MODE);

	mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 0), src[0] | REG_SOC_WMSK);
	mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 1), src[1] | REG_SOC_WMSK);
	mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 2), src[2]);
	mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 4), src[4] | REG_SOC_WMSK);
	mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 5), src[5] | REG_SOC_WMSK);

	mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3), src[3] | REG_SOC_WMSK);

	while ((mmio_read_32(CRU_BASE + CRU_PLL_CON(pll_id, 2)) &
659
		(1U << 31)) == 0x0)
660
661
662
		;
}

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
__pmusramfunc static void pmusram_enable_watchdog(void)
{
	/* Make the watchdog use the first global reset. */
	mmio_write_32(CRU_BASE + CRU_GLB_RST_CON, 1 << 1);

	/*
	 * This gives the system ~8 seconds before reset. The pclk for the
	 * watchdog is 4MHz on reset. The value of 0x9 in WDT_TORR means that
	 * the watchdog will wait for 0x1ffffff cycles before resetting.
	 */
	mmio_write_32(WDT0_BASE + 4, 0x9);

	/* Enable the watchdog */
	mmio_setbits_32(WDT0_BASE, 0x1);

	/* Magic reset the watchdog timer value for WDT_CRR. */
	mmio_write_32(WDT0_BASE + 0xc, 0x76);

	secure_watchdog_ungate();

	/* The watchdog is in PD_ALIVE, so deidle it. */
	mmio_clrbits_32(PMU_BASE + PMU_BUS_CLR, PMU_CLR_ALIVE);
}

687
void dmc_suspend(void)
688
689
{
	struct rk3399_sdram_params *sdram_params = &sdram_config;
690
	struct rk3399_ddr_publ_regs *phy_regs;
691
692
693
	uint32_t *params_ctl;
	uint32_t *params_pi;
	uint32_t refdiv, postdiv2, postdiv1, fbdiv;
694
	uint32_t ch, byte, i;
695

696
	phy_regs = &sdram_params->phy_regs;
697
698
699
	params_ctl = sdram_params->pctl_regs.denali_ctl;
	params_pi = sdram_params->pi_regs.denali_pi;

700
701
702
703
704
705
706
707
708
	/* save dpll register and ddr clock register value to pmusram */
	cru_clksel_con6 = mmio_read_32(CRU_BASE + CRU_CLKSEL_CON6);
	for (i = 0; i < PLL_CON_COUNT; i++)
		dpll_data[i] = mmio_read_32(CRU_BASE + CRU_PLL_CON(DPLL_ID, i));

	fbdiv = dpll_data[0] & 0xfff;
	postdiv2 = POSTDIV2_DEC(dpll_data[1]);
	postdiv1 = POSTDIV1_DEC(dpll_data[1]);
	refdiv = REFDIV_DEC(dpll_data[1]);
709
710
711
712
713
714
715
716
717

	sdram_params->ddr_freq = ((fbdiv * 24) /
				(refdiv * postdiv1 * postdiv2)) * MHz;

	INFO("sdram_params->ddr_freq = %d\n", sdram_params->ddr_freq);
	sdram_params->odt = (((mmio_read_32(PHY_REG(0, 5)) >> 16) &
			       0x7) != 0) ? 1 : 0;

	/* copy the registers CTL PI and PHY */
718
	dram_regcpy((uintptr_t)&params_ctl[0], CTL_REG(0, 0), CTL_REG_NUM);
719
720
721
722

	/* mask DENALI_CTL_00_DATA.START, only copy here, will trigger later */
	params_ctl[0] &= ~(0x1 << 0);

723
	dram_regcpy((uintptr_t)&params_pi[0], PI_REG(0, 0),
724
725
726
727
728
		    PI_REG_NUM);

	/* mask DENALI_PI_00_DATA.START, only copy here, will trigger later*/
	params_pi[0] &= ~(0x1 << 0);

729
730
	dram_regcpy((uintptr_t)&phy_regs->phy0[0],
			    PHY_REG(0, 0), 91);
731
732

	for (i = 0; i < 3; i++)
733
		dram_regcpy((uintptr_t)&phy_regs->phy512[i][0],
734
735
			    PHY_REG(0, 512 + 128 * i), 38);

736
	dram_regcpy((uintptr_t)&phy_regs->phy896[0], PHY_REG(0, 896), 63);
737

738
739
740
741
742
743
	for (ch = 0; ch < sdram_params->num_channels; ch++) {
		for (byte = 0; byte < 4; byte++)
			sdram_params->rx_cal_dqs[ch][byte] = (0xfff << 16) &
				mmio_read_32(PHY_REG(ch, 57 + byte * 128));
	}

744
	/* set DENALI_PHY_957_DATA.PHY_DLL_RST_EN = 0x1 */
745
746
747
748
	phy_regs->phy896[957 - 896] &= ~(0x3 << 24);
	phy_regs->phy896[957 - 896] |= 1 << 24;
	phy_regs->phy896[0] |= 1;
	phy_regs->phy896[0] &= ~(0x3 << 8);
749
750
}

751
__pmusramfunc void dmc_resume(void)
752
753
754
755
756
{
	struct rk3399_sdram_params *sdram_params = &sdram_config;
	uint32_t channel_mask = 0;
	uint32_t channel;

757
758
759
	pmusram_enable_watchdog();
	pmu_sgrf_rst_hld_release();
	restore_pmu_rsthold();
760
761
	sram_secure_timer_init();

762
763
764
765
766
767
768
769
	/*
	 * we switch ddr clock to abpll when suspend,
	 * we set back to dpll here
	 */
	mmio_write_32(CRU_BASE + CRU_CLKSEL_CON6,
			cru_clksel_con6 | REG_SOC_WMSK);
	pmusram_restore_pll(DPLL_ID, dpll_data);

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
	configure_sgrf();

retry:
	for (channel = 0; channel < sdram_params->num_channels; channel++) {
		phy_pctrl_reset(channel);
		pctl_cfg(channel, sdram_params);
	}

	for (channel = 0; channel < 2; channel++) {
		if (sdram_params->ch[channel].col)
			channel_mask |= 1 << channel;
	}

	if (pctl_start(channel_mask, sdram_params) < 0)
		goto retry;

	for (channel = 0; channel < sdram_params->num_channels; channel++) {
		/* LPDDR2/LPDDR3 need to wait DAI complete, max 10us */
		if (sdram_params->dramtype == LPDDR3)
			sram_udelay(10);

		/* If traning fail, retry to do it again. */
		if (data_training(channel, sdram_params, PI_FULL_TRAINING))
			goto retry;

		set_ddrconfig(sdram_params, channel,
			      sdram_params->ch[channel].ddrconfig);
	}

	dram_all_config(sdram_params);

	/* Switch to index 1 and prepare for DDR frequency switch. */
802
	dram_switch_to_next_index(sdram_params);
803
}