ari.c 13.3 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
 */

#include <arch.h>
#include <arch_helpers.h>
9
#include <assert.h>
10
#include <debug.h>
11
#include <delay_timer.h>
12
13
#include <denver.h>
#include <mmio.h>
14
#include <mce_private.h>
15
#include <platform.h>
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <sys/errno.h>
#include <t18x_ari.h>

/*******************************************************************************
 * Register offsets for ARI request/results
 ******************************************************************************/
#define ARI_REQUEST			0x0
#define ARI_REQUEST_EVENT_MASK		0x4
#define ARI_STATUS			0x8
#define ARI_REQUEST_DATA_LO		0xC
#define ARI_REQUEST_DATA_HI		0x10
#define ARI_RESPONSE_DATA_LO		0x14
#define ARI_RESPONSE_DATA_HI		0x18

/* Status values for the current request */
31
32
33
34
35
36
37
#define ARI_REQ_PENDING			1U
#define ARI_REQ_ONGOING			3U
#define ARI_REQUEST_VALID_BIT		(1U << 8)
#define ARI_EVT_MASK_STANDBYWFI_BIT	(1U << 7)

/* default timeout (ms) to wait for ARI completion */
#define ARI_MAX_RETRY_COUNT		2000
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

/*******************************************************************************
 * ARI helper functions
 ******************************************************************************/
static inline uint32_t ari_read_32(uint32_t ari_base, uint32_t reg)
{
	return mmio_read_32(ari_base + reg);
}

static inline void ari_write_32(uint32_t ari_base, uint32_t val, uint32_t reg)
{
	mmio_write_32(ari_base + reg, val);
}

static inline uint32_t ari_get_request_low(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_REQUEST_DATA_LO);
}

static inline uint32_t ari_get_request_high(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_REQUEST_DATA_HI);
}

static inline uint32_t ari_get_response_low(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_RESPONSE_DATA_LO);
}

static inline uint32_t ari_get_response_high(uint32_t ari_base)
{
	return ari_read_32(ari_base, ARI_RESPONSE_DATA_HI);
}

static inline void ari_clobber_response(uint32_t ari_base)
{
	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_LO);
	ari_write_32(ari_base, 0, ARI_RESPONSE_DATA_HI);
}

static int ari_request_wait(uint32_t ari_base, uint32_t evt_mask, uint32_t req,
		uint32_t lo, uint32_t hi)
{
81
82
	uint32_t retries = ARI_MAX_RETRY_COUNT;
	uint32_t status;
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

	/* program the request, event_mask, hi and lo registers */
	ari_write_32(ari_base, lo, ARI_REQUEST_DATA_LO);
	ari_write_32(ari_base, hi, ARI_REQUEST_DATA_HI);
	ari_write_32(ari_base, evt_mask, ARI_REQUEST_EVENT_MASK);
	ari_write_32(ari_base, req | ARI_REQUEST_VALID_BIT, ARI_REQUEST);

	/*
	 * For commands that have an event trigger, we should bypass
	 * ARI_STATUS polling, since MCE is waiting for SW to trigger
	 * the event.
	 */
	if (evt_mask)
		return 0;

98
99
100
101
102
103
104
105
106
107
108
109
110
	/* For shutdown/reboot commands, we dont have to check for timeouts */
	if ((req == (uint32_t)TEGRA_ARI_MISC_CCPLEX) &&
	    ((lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) ||
	     (lo == (uint32_t)TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT))) {
			return 0;
	}

	/*
	 * Wait for the command response for not more than the timeout
	 */
	while (retries != 0U) {

		/* read the command status */
111
		status = ari_read_32(ari_base, ARI_STATUS);
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
		if ((status & (ARI_REQ_ONGOING | ARI_REQ_PENDING)) == 0U)
			break;

		/* delay 1 ms */
		mdelay(1);

		/* decrement the retry count */
		retries--;
	}

	/* assert if the command timed out */
	if (retries == 0U) {
		ERROR("ARI request timed out: req %d on CPU %d\n",
			req, plat_my_core_pos());
		assert(retries != 0U);
	}
128
129
130
131
132
133
134
135
136
137
138
139
140

	return 0;
}

int ari_enter_cstate(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
	/* check for allowed power state */
	if (state != TEGRA_ARI_CORE_C0 && state != TEGRA_ARI_CORE_C1 &&
	    state != TEGRA_ARI_CORE_C6 && state != TEGRA_ARI_CORE_C7) {
		ERROR("%s: unknown cstate (%d)\n", __func__, state);
		return EINVAL;
	}

141
142
143
	/* clean the previous response state */
	ari_clobber_response(ari_base);

144
145
146
147
148
149
150
151
152
153
154
	/* Enter the cstate, to be woken up after wake_time (TSC ticks) */
	return ari_request_wait(ari_base, ARI_EVT_MASK_STANDBYWFI_BIT,
		TEGRA_ARI_ENTER_CSTATE, state, wake_time);
}

int ari_update_cstate_info(uint32_t ari_base, uint32_t cluster, uint32_t ccplex,
	uint32_t system, uint8_t sys_state_force, uint32_t wake_mask,
	uint8_t update_wake_mask)
{
	uint32_t val = 0;

155
156
157
	/* clean the previous response state */
	ari_clobber_response(ari_base);

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
	/* update CLUSTER_CSTATE? */
	if (cluster)
		val |= (cluster & CLUSTER_CSTATE_MASK) |
			CLUSTER_CSTATE_UPDATE_BIT;

	/* update CCPLEX_CSTATE? */
	if (ccplex)
		val |= (ccplex & CCPLEX_CSTATE_MASK) << CCPLEX_CSTATE_SHIFT |
			CCPLEX_CSTATE_UPDATE_BIT;

	/* update SYSTEM_CSTATE? */
	if (system)
		val |= ((system & SYSTEM_CSTATE_MASK) << SYSTEM_CSTATE_SHIFT) |
		       ((sys_state_force << SYSTEM_CSTATE_FORCE_UPDATE_SHIFT) |
			SYSTEM_CSTATE_UPDATE_BIT);

	/* update wake mask value? */
	if (update_wake_mask)
		val |= CSTATE_WAKE_MASK_UPDATE_BIT;

	/* set the updated cstate info */
	return ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CSTATE_INFO, val,
			wake_mask);
}

int ari_update_crossover_time(uint32_t ari_base, uint32_t type, uint32_t time)
{
	/* sanity check crossover type */
	if ((type == TEGRA_ARI_CROSSOVER_C1_C6) ||
	    (type > TEGRA_ARI_CROSSOVER_CCP3_SC1))
		return EINVAL;

190
191
192
	/* clean the previous response state */
	ari_clobber_response(ari_base);

193
194
195
196
197
198
199
200
201
202
203
204
205
	/* update crossover threshold time */
	return ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CROSSOVER,
			type, time);
}

uint64_t ari_read_cstate_stats(uint32_t ari_base, uint32_t state)
{
	int ret;

	/* sanity check crossover type */
	if (state == 0)
		return EINVAL;

206
207
208
	/* clean the previous response state */
	ari_clobber_response(ari_base);

209
210
211
212
213
214
215
216
217
	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_CSTATE_STATS, state, 0);
	if (ret != 0)
		return EINVAL;

	return (uint64_t)ari_get_response_low(ari_base);
}

int ari_write_cstate_stats(uint32_t ari_base, uint32_t state, uint32_t stats)
{
218
219
220
	/* clean the previous response state */
	ari_clobber_response(ari_base);

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
	/* write the cstate stats */
	return ari_request_wait(ari_base, 0, TEGRA_ARI_WRITE_CSTATE_STATS, state,
			stats);
}

uint64_t ari_enumeration_misc(uint32_t ari_base, uint32_t cmd, uint32_t data)
{
	uint64_t resp;
	int ret;

	/* clean the previous response state */
	ari_clobber_response(ari_base);

	/* ARI_REQUEST_DATA_HI is reserved for commands other than 'ECHO' */
	if (cmd != TEGRA_ARI_MISC_ECHO)
		data = 0;

	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_MISC, cmd, data);
	if (ret)
		return (uint64_t)ret;

	/* get the command response */
	resp = ari_get_response_low(ari_base);
	resp |= ((uint64_t)ari_get_response_high(ari_base) << 32);

	return resp;
}

int ari_is_ccx_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
	int ret;

253
254
255
	/* clean the previous response state */
	ari_clobber_response(ari_base);

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_IS_CCX_ALLOWED, state & 0x7,
			wake_time);
	if (ret) {
		ERROR("%s: failed (%d)\n", __func__, ret);
		return 0;
	}

	/* 1 = CCx allowed, 0 = CCx not allowed */
	return (ari_get_response_low(ari_base) & 0x1);
}

int ari_is_sc7_allowed(uint32_t ari_base, uint32_t state, uint32_t wake_time)
{
	int ret;

	/* check for allowed power state */
	if (state != TEGRA_ARI_CORE_C0 && state != TEGRA_ARI_CORE_C1 &&
	    state != TEGRA_ARI_CORE_C6 && state != TEGRA_ARI_CORE_C7) {
		ERROR("%s: unknown cstate (%d)\n", __func__, state);
		return EINVAL;
	}

278
279
280
	/* clean the previous response state */
	ari_clobber_response(ari_base);

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_IS_SC7_ALLOWED, state,
			wake_time);
	if (ret) {
		ERROR("%s: failed (%d)\n", __func__, ret);
		return 0;
	}

	/* 1 = SC7 allowed, 0 = SC7 not allowed */
	return !!ari_get_response_low(ari_base);
}

int ari_online_core(uint32_t ari_base, uint32_t core)
{
	int cpu = read_mpidr() & MPIDR_CPU_MASK;
	int cluster = (read_mpidr() & MPIDR_CLUSTER_MASK) >>
			MPIDR_AFFINITY_BITS;
	int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;

	/* construct the current CPU # */
	cpu |= (cluster << 2);

	/* sanity check target core id */
	if ((core >= MCE_CORE_ID_MAX) || (cpu == core)) {
		ERROR("%s: unsupported core id (%d)\n", __func__, core);
		return EINVAL;
	}

	/*
	 * The Denver cluster has 2 CPUs only - 0, 1.
	 */
	if (impl == DENVER_IMPL && ((core == 2) || (core == 3))) {
		ERROR("%s: unknown core id (%d)\n", __func__, core);
		return EINVAL;
	}

316
317
318
	/* clean the previous response state */
	ari_clobber_response(ari_base);

319
320
321
322
323
324
325
	return ari_request_wait(ari_base, 0, TEGRA_ARI_ONLINE_CORE, core, 0);
}

int ari_cc3_ctrl(uint32_t ari_base, uint32_t freq, uint32_t volt, uint8_t enable)
{
	int val;

326
327
328
	/* clean the previous response state */
	ari_clobber_response(ari_base);

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
	/*
	 * If the enable bit is cleared, Auto-CC3 will be disabled by setting
	 * the SW visible voltage/frequency request registers for all non
	 * floorswept cores valid independent of StandbyWFI and disabling
	 * the IDLE voltage/frequency request register. If set, Auto-CC3
	 * will be enabled by setting the ARM SW visible voltage/frequency
	 * request registers for all non floorswept cores to be enabled by
	 * StandbyWFI or the equivalent signal, and always keeping the IDLE
	 * voltage/frequency request register enabled.
	 */
	val = (((freq & MCE_AUTO_CC3_FREQ_MASK) << MCE_AUTO_CC3_FREQ_SHIFT) |\
		((volt & MCE_AUTO_CC3_VTG_MASK) << MCE_AUTO_CC3_VTG_SHIFT) |\
		(enable ? MCE_AUTO_CC3_ENABLE_BIT : 0));

	return ari_request_wait(ari_base, 0, TEGRA_ARI_CC3_CTRL, val, 0);
}

346
int ari_reset_vector_update(uint32_t ari_base)
347
{
348
349
350
	/* clean the previous response state */
	ari_clobber_response(ari_base);

351
352
353
354
	/*
	 * Need to program the CPU reset vector one time during cold boot
	 * and SC7 exit
	 */
355
	ari_request_wait(ari_base, 0, TEGRA_ARI_COPY_MISCREG_AA64_RST, 0, 0);
356
357
358
359
360
361

	return 0;
}

int ari_roc_flush_cache_trbits(uint32_t ari_base)
{
362
363
364
	/* clean the previous response state */
	ari_clobber_response(ari_base);

365
366
367
368
369
370
	return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_FLUSH_CACHE_TRBITS,
			0, 0);
}

int ari_roc_flush_cache(uint32_t ari_base)
{
371
372
373
	/* clean the previous response state */
	ari_clobber_response(ari_base);

374
375
376
377
378
379
	return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_FLUSH_CACHE_ONLY,
			0, 0);
}

int ari_roc_clean_cache(uint32_t ari_base)
{
380
381
382
	/* clean the previous response state */
	ari_clobber_response(ari_base);

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
	return ari_request_wait(ari_base, 0, TEGRA_ARI_ROC_CLEAN_CACHE_ONLY,
			0, 0);
}

uint64_t ari_read_write_mca(uint32_t ari_base, mca_cmd_t cmd, uint64_t *data)
{
	mca_arg_t mca_arg;
	int ret;

	/* Set data (write) */
	mca_arg.data = data ? *data : 0ull;

	/* Set command */
	ari_write_32(ari_base, cmd.input.low, ARI_RESPONSE_DATA_LO);
	ari_write_32(ari_base, cmd.input.high, ARI_RESPONSE_DATA_HI);

	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_MCA, mca_arg.arg.low,
			mca_arg.arg.high);
	if (!ret) {
		mca_arg.arg.low = ari_get_response_low(ari_base);
		mca_arg.arg.high = ari_get_response_high(ari_base);
		if (!mca_arg.err.finish)
			return (uint64_t)mca_arg.err.error;

		if (data) {
			mca_arg.arg.low = ari_get_request_low(ari_base);
			mca_arg.arg.high = ari_get_request_high(ari_base);
			*data = mca_arg.data;
		}
	}

	return 0;
}

int ari_update_ccplex_gsc(uint32_t ari_base, uint32_t gsc_idx)
{
	/* sanity check GSC ID */
	if (gsc_idx > TEGRA_ARI_GSC_VPR_IDX)
		return EINVAL;

423
424
425
	/* clean the previous response state */
	ari_clobber_response(ari_base);

426
427
428
429
430
431
432
433
434
435
436
437
	/*
	 * The MCE code will read the GSC carveout value, corrseponding to
	 * the ID, from the MC registers and update the internal GSC registers
	 * of the CCPLEX.
	 */
	ari_request_wait(ari_base, 0, TEGRA_ARI_UPDATE_CCPLEX_GSC, gsc_idx, 0);

	return 0;
}

void ari_enter_ccplex_state(uint32_t ari_base, uint32_t state_idx)
{
438
439
440
	/* clean the previous response state */
	ari_clobber_response(ari_base);

441
442
443
444
445
	/*
	 * The MCE will shutdown or restart the entire system
	 */
	(void)ari_request_wait(ari_base, 0, TEGRA_ARI_MISC_CCPLEX, state_idx, 0);
}
446
447
448
449
450
451
452

int ari_read_write_uncore_perfmon(uint32_t ari_base,
		uncore_perfmon_req_t req, uint64_t *data)
{
	int ret;
	uint32_t val;

453
454
455
	/* clean the previous response state */
	ari_clobber_response(ari_base);

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
	/* sanity check input parameters */
	if (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_READ && !data) {
		ERROR("invalid parameters\n");
		return EINVAL;
	}

	/*
	 * For "write" commands get the value that has to be written
	 * to the uncore perfmon registers
	 */
	val = (req.perfmon_command.cmd == UNCORE_PERFMON_CMD_WRITE) ?
		*data : 0;

	ret = ari_request_wait(ari_base, 0, TEGRA_ARI_PERFMON, val, req.data);
	if (ret)
		return ret;

	/* read the command status value */
	req.perfmon_status.val = ari_get_response_high(ari_base) &
				 UNCORE_PERFMON_RESP_STATUS_MASK;

	/*
	 * For "read" commands get the data from the uncore
	 * perfmon registers
	 */
	if ((req.perfmon_status.val == 0) && (req.perfmon_command.cmd ==
	     UNCORE_PERFMON_CMD_READ))
		*data = ari_get_response_low(ari_base);

	return (int)req.perfmon_status.val;
}
487
488
489
490
491
492
493
494

void ari_misc_ccplex(uint32_t ari_base, uint32_t index, uint32_t value)
{
	/*
	 * This invokes the ARI_MISC_CCPLEX commands. This can be
	 * used to enable/disable coresight clock gating.
	 */

495
	if ((index > TEGRA_ARI_MISC_CCPLEX_EDBGREQ) ||
496
497
498
499
500
501
502
503
504
505
		((index == TEGRA_ARI_MISC_CCPLEX_CORESIGHT_CG_CTRL) &&
		(value > 1))) {
		ERROR("%s: invalid parameters \n", __func__);
		return;
	}

	/* clean the previous response state */
	ari_clobber_response(ari_base);
	(void)ari_request_wait(ari_base, 0, TEGRA_ARI_MISC_CCPLEX, index, value);
}