context_mgmt.c 16.9 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
2
 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
Achin Gupta's avatar
Achin Gupta committed
5
6
 */

7
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
8
#include <arch_helpers.h>
9
#include <assert.h>
Achin Gupta's avatar
Achin Gupta committed
10
#include <bl_common.h>
11
#include <context.h>
Achin Gupta's avatar
Achin Gupta committed
12
#include <context_mgmt.h>
13
#include <interrupt_mgmt.h>
14
#include <platform.h>
15
#include <platform_def.h>
16
#include <smcc_helpers.h>
17
#include <string.h>
18
#include <utils.h>
Achin Gupta's avatar
Achin Gupta committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
34
void cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
35
36
37
38
39
40
41
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

42
/*******************************************************************************
43
 * The following function initializes the cpu_context 'ctx' for
44
45
46
47
48
49
50
51
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
 * of the entry_point_info. The function returns a pointer to the initialized
 * context and sets this as the next context to return to.
 *
 * The EE and ST attributes are used to configure the endianess and secure
52
 * timer availability for the new execution context.
53
54
55
56
57
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
58
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
59
{
60
	unsigned int security_state;
61
62
63
64
65
66
67
	uint32_t scr_el3;
	el3_state_t *state;
	gp_regs_t *gp_regs;
	unsigned long sctlr_elx;

	assert(ctx);

68
69
	security_state = GET_SECURITY_STATE(ep->h.attr);

70
	/* Clear any residual register values from the context */
71
	zeromem(ctx, sizeof(*ctx));
72
73

	/*
74
75
76
77
78
79
80
	 * SCR_EL3 was initialised during reset sequence in macro
	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
	 * affect the next EL.
	 *
	 * The following fields are initially set to zero and then updated to
	 * the required value depending on the state of the SPSR_EL3 and the
	 * Security state and entrypoint attributes of the next EL.
81
82
83
84
	 */
	scr_el3 = read_scr();
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);
85
86
87
	/*
	 * SCR_NS: Set the security state of the next EL.
	 */
88
89
	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;
90
91
92
93
	/*
	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
	 *  Exception level as specified by SPSR.
	 */
94
95
	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;
96
97
98
99
100
	/*
	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
	 *  Secure timer registers to EL3, from AArch64 state only, if specified
	 *  by the entrypoint attributes.
	 */
101
102
103
	if (EP_GET_ST(ep->h.attr))
		scr_el3 |= SCR_ST_BIT;

104
#ifndef HANDLE_EA_EL3_FIRST
105
106
107
108
109
	/*
	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
	 *  to EL3 when executing at a lower EL. When executing at EL3, External
	 *  Aborts are taken to EL3.
	 */
110
111
112
	scr_el3 &= ~SCR_EA_BIT;
#endif

113
#ifdef IMAGE_BL31
114
	/*
115
116
	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
	 *  indicated by the interrupt routing model for BL31.
117
	 */
118
	scr_el3 |= get_scr_el3_from_routing_model(security_state);
119
#endif
120
121

	/*
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
	 * next mode is Hyp.
	 */
	if ((GET_RW(ep->spsr) == MODE_RW_64
	     && GET_EL(ep->spsr) == MODE_EL2)
	    || (GET_RW(ep->spsr) != MODE_RW_64
		&& GET_M32(ep->spsr) == MODE32_hyp)) {
		scr_el3 |= SCR_HCE_BIT;
	}

	/*
	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
	 * execution state setting all fields rather than relying of the hw.
	 * Some fields have architecturally UNKNOWN reset values and these are
	 * set to zero.
138
	 *
139
	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
140
	 *
141
142
	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
	 *  required by PSCI specification)
143
144
	 */
	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
145
146
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
147
148
	else {
		/*
149
150
151
152
153
154
155
156
157
158
159
		 * If the target execution state is AArch32 then the following
		 * fields need to be set.
		 *
		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
160
		 */
161
162
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
163
164
	}

165
166
167
168
169
	/*
	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
	 * and other EL2 resgisters are set up by cm_preapre_ns_entry() as they
	 * are not part of the stored cpu_context.
	 */
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

	/* Populate EL3 state so that we've the right context before doing ERET */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
	cm_init_context_common(ctx, ep);
}

211
212
213
214
215
216
217
218
219
220
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
221
	uint32_t sctlr_elx, scr_el3;
222
223
224
225
226
227
228
229
230
231
232
233
234
	cpu_context_t *ctx = cm_get_context(security_state);

	assert(ctx);

	if (security_state == NON_SECURE) {
		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
		if (scr_el3 & SCR_HCE_BIT) {
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
						 CTX_SCTLR_EL1);
			sctlr_elx &= ~SCTLR_EE_BIT;
			sctlr_elx |= SCTLR_EL2_RES1;
			write_sctlr_el2(sctlr_elx);
235
		} else if (EL_IMPLEMENTED(2)) {
236
237
238
239
240
241
242
243
244
245
			/*
			 * EL2 present but unused, need to disable safely.
			 * SCTLR_EL2 can be ignored in this case.
			 *
			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
			 * to zero so that Non-secure operations do not trap to
			 * EL2.
			 *
			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
			 */
246
247
			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
			/*
			 * Initialise CPTR_EL2 setting all fields rather than
			 * relying on the hw. All fields have architecturally
			 * UNKNOWN reset values.
			 *
			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
			 *  accesses to the CPACR_EL1 or CPACR from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
			 *  register accesses to the trace registers from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
			 *  to SIMD and floating-point functionality from both
			 *  Execution states do not trap to EL2.
			 */
			write_cptr_el2(CPTR_EL2_RESET_VAL &
					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
					| CPTR_EL2_TFP_BIT));
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
			/*
			 * Initiliase CNTHCTL_EL2. All fields are
			 * architecturally UNKNOWN on reset and are set to zero
			 * except for field(s) listed below.
			 *
			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
			 *  physical timer registers.
			 *
			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
			 *  physical counter registers.
			 */
			write_cnthctl_el2(CNTHCTL_RESET_VAL |
						EL1PCEN_BIT | EL1PCTEN_BIT);
284

285
286
287
288
			/*
			 * Initialise CNTVOFF_EL2 to zero as it resets to an
			 * architecturally UNKNOWN value.
			 */
289
290
			write_cntvoff_el2(0);

291
292
293
294
			/*
			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
			 * MPIDR_EL1 respectively.
			 */
295
296
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
297
298

			/*
299
300
301
302
303
304
305
306
307
			 * Initialise VTTBR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
			 *  2 address translation is disabled, cache maintenance
			 *  operations depend on the VMID.
			 *
			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
			 *  translation is disabled.
308
			 */
309
310
311
312
			write_vttbr_el2(VTTBR_RESET_VAL &
				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));

313
			/*
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
			 * Initialise MDCR_EL2, setting all fields rather than
			 * relying on hw. Some fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
			 *  EL1 System register accesses to the Debug ROM
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
			 *  System register accesses to the powerdown debug
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDA: Set to zero so that System register
			 *  accesses to the debug registers do not trap to EL2.
			 *
			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
			 *  are not routed to EL2.
			 *
			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
			 *  Monitors.
			 *
			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
			 *  EL1 accesses to all Performance Monitors registers
			 *  are not trapped to EL2.
			 *
			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
			 *  trapped to EL2.
			 *
			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
			 *  architecturally-defined reset value.
345
			 */
346
347
348
349
350
351
352
			write_mdcr_el2((MDCR_EL2_RESET_VAL |
					((read_pmcr_el0() & PMCR_EL0_N_BITS)
					>> PMCR_EL0_N_SHIFT)) &
					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
					| MDCR_EL2_TPMCR_BIT));
353
			/*
354
355
356
357
358
359
			 * Initialise HSTR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * HSTR_EL2.T<n>: Set all these fields to zero so that
			 *  Non-secure EL0 or EL1 accesses to System registers
			 *  do not trap to EL2.
360
			 */
361
			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
362
			/*
363
364
365
366
367
			 * Initialise CNTHP_CTL_EL2. All fields are
			 * architecturally UNKNOWN on reset.
			 *
			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
			 *  physical timer and prevent timer interrupts.
368
			 */
369
370
			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
						~(CNTHP_CTL_ENABLE_BIT));
371
372
373
374
375
376
377
378
		}
	}

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));

	cm_set_next_context(ctx);
}

Achin Gupta's avatar
Achin Gupta committed
379
/*******************************************************************************
380
381
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
382
383
384
385
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
386
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
387

388
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
389
390
391
392
393
394
395
	assert(ctx);

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
396
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
397

398
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
399
400
401
402
403
404
	assert(ctx);

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
}

/*******************************************************************************
405
406
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
407
 ******************************************************************************/
408
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
409
{
410
411
	cpu_context_t *ctx;
	el3_state_t *state;
412

413
	ctx = cm_get_context(security_state);
414
415
	assert(ctx);

416
	/* Populate EL3 state so that ERET jumps to the correct entry */
417
418
419
420
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

421
/*******************************************************************************
422
423
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
424
 ******************************************************************************/
425
void cm_set_elr_spsr_el3(uint32_t security_state,
426
			uintptr_t entrypoint, uint32_t spsr)
427
{
428
429
	cpu_context_t *ctx;
	el3_state_t *state;
430

431
	ctx = cm_get_context(security_state);
432
433
434
435
436
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
437
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
438
439
}

440
441
442
443
444
445
446
447
448
449
450
451
452
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

453
	ctx = cm_get_context(security_state);
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
	assert(ctx);

	/* Ensure that the bit position is a valid one */
	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);

	/* Ensure that the 'value' is only a bit wide */
	assert(value <= 1);

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1 << bit_pos);
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

482
	ctx = cm_get_context(security_state);
483
484
485
486
487
488
489
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	return read_ctx_reg(state, CTX_SCR_EL3);
}

490
491
492
493
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
494
495
496
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
497
	cpu_context_t *ctx;
498

499
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
500
501
	assert(ctx);

502
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
503
}