plat_pm.c 17 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
 */

#include <assert.h>
#include <errno.h>
9
10
11
12
13

#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/arm/cci.h>
#include <drivers/arm/gicv2.h>
14
#include <drivers/ti/uart/uart_16550.h>
15
16
17
#include <lib/bakery_lock.h>
#include <lib/mmio.h>
#include <lib/psci/psci.h>
18
#include <plat/arm/common/plat_arm.h>
19

20
21
22
23
24
25
26
27
28
29
30
#include <mcucfg.h>
#include <mt8173_def.h>
#include <mt_cpuxgpt.h> /* generic_timer_backup() */
#include <plat_private.h>
#include <power_tracer.h>
#include <rtc.h>
#include <scu.h>
#include <spm_hotplug.h>
#include <spm_mcdi.h>
#include <spm_suspend.h>

31
32
33
34
35
36
37
38
39
40
#define MTK_PWR_LVL0	0
#define MTK_PWR_LVL1	1
#define MTK_PWR_LVL2	2

/* Macros to read the MTK power domain state */
#define MTK_CORE_PWR_STATE(state)	(state)->pwr_domain_state[MTK_PWR_LVL0]
#define MTK_CLUSTER_PWR_STATE(state)	(state)->pwr_domain_state[MTK_PWR_LVL1]
#define MTK_SYSTEM_PWR_STATE(state)	((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) ?\
			(state)->pwr_domain_state[MTK_PWR_LVL2] : 0)

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#if PSCI_EXTENDED_STATE_ID
/*
 *  The table storing the valid idle power states. Ensure that the
 *  array entries are populated in ascending order of state-id to
 *  enable us to use binary search during power state validation.
 *  The table must be terminated by a NULL entry.
 */
const unsigned int mtk_pm_idle_states[] = {
	/* State-id - 0x001 */
	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN,
		MTK_LOCAL_STATE_RET, MTK_PWR_LVL0, PSTATE_TYPE_STANDBY),
	/* State-id - 0x002 */
	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_RUN,
		MTK_LOCAL_STATE_OFF, MTK_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
	/* State-id - 0x022 */
	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_RUN, MTK_LOCAL_STATE_OFF,
		MTK_LOCAL_STATE_OFF, MTK_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
#if PLAT_MAX_PWR_LVL > MTK_PWR_LVL1
	/* State-id - 0x222 */
	mtk_make_pwrstate_lvl2(MTK_LOCAL_STATE_OFF, MTK_LOCAL_STATE_OFF,
		MTK_LOCAL_STATE_OFF, MTK_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
#endif
	0,
};
#endif

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
struct core_context {
	unsigned long timer_data[8];
	unsigned int count;
	unsigned int rst;
	unsigned int abt;
	unsigned int brk;
};

struct cluster_context {
	struct core_context core[PLATFORM_MAX_CPUS_PER_CLUSTER];
};

/*
 * Top level structure to hold the complete context of a multi cluster system
 */
struct system_context {
	struct cluster_context cluster[PLATFORM_CLUSTER_COUNT];
};

/*
 * Top level structure which encapsulates the context of the entire system
 */
static struct system_context dormant_data[1];

static inline struct cluster_context *system_cluster(
						struct system_context *system,
						uint32_t clusterid)
{
	return &system->cluster[clusterid];
}

static inline struct core_context *cluster_core(struct cluster_context *cluster,
						uint32_t cpuid)
{
	return &cluster->core[cpuid];
}

static struct cluster_context *get_cluster_data(unsigned long mpidr)
{
	uint32_t clusterid;

	clusterid = (mpidr & MPIDR_CLUSTER_MASK) >> MPIDR_AFFINITY_BITS;

	return system_cluster(dormant_data, clusterid);
}

static struct core_context *get_core_data(unsigned long mpidr)
{
	struct cluster_context *cluster;
	uint32_t cpuid;

	cluster = get_cluster_data(mpidr);
	cpuid = mpidr & MPIDR_CPU_MASK;

	return cluster_core(cluster, cpuid);
}

static void mt_save_generic_timer(unsigned long *container)
{
	uint64_t ctl;
	uint64_t val;

	__asm__ volatile("mrs	%x0, cntkctl_el1\n\t"
			 "mrs	%x1, cntp_cval_el0\n\t"
			 "stp	%x0, %x1, [%2, #0]"
			 : "=&r" (ctl), "=&r" (val)
			 : "r" (container)
			 : "memory");

	__asm__ volatile("mrs	%x0, cntp_tval_el0\n\t"
			 "mrs	%x1, cntp_ctl_el0\n\t"
			 "stp	%x0, %x1, [%2, #16]"
			 : "=&r" (val), "=&r" (ctl)
			 : "r" (container)
			 : "memory");

	__asm__ volatile("mrs	%x0, cntv_tval_el0\n\t"
			 "mrs	%x1, cntv_ctl_el0\n\t"
			 "stp	%x0, %x1, [%2, #32]"
			 : "=&r" (val), "=&r" (ctl)
			 : "r" (container)
			 : "memory");
}

static void mt_restore_generic_timer(unsigned long *container)
{
	uint64_t ctl;
	uint64_t val;

	__asm__ volatile("ldp	%x0, %x1, [%2, #0]\n\t"
			 "msr	cntkctl_el1, %x0\n\t"
			 "msr	cntp_cval_el0, %x1"
			 : "=&r" (ctl), "=&r" (val)
			 : "r" (container)
			 : "memory");

	__asm__ volatile("ldp	%x0, %x1, [%2, #16]\n\t"
			 "msr	cntp_tval_el0, %x0\n\t"
			 "msr	cntp_ctl_el0, %x1"
			 : "=&r" (val), "=&r" (ctl)
			 : "r" (container)
			 : "memory");

	__asm__ volatile("ldp	%x0, %x1, [%2, #32]\n\t"
			 "msr	cntv_tval_el0, %x0\n\t"
			 "msr	cntv_ctl_el0, %x1"
			 : "=&r" (val), "=&r" (ctl)
			 : "r" (container)
			 : "memory");
}

static inline uint64_t read_cntpctl(void)
{
	uint64_t cntpctl;

	__asm__ volatile("mrs	%x0, cntp_ctl_el0"
			 : "=r" (cntpctl) : : "memory");

	return cntpctl;
}

static inline void write_cntpctl(uint64_t cntpctl)
{
	__asm__ volatile("msr	cntp_ctl_el0, %x0" : : "r"(cntpctl));
}

static void stop_generic_timer(void)
{
	/*
	 * Disable the timer and mask the irq to prevent
	 * suprious interrupts on this cpu interface. It
	 * will bite us when we come back if we don't. It
	 * will be replayed on the inbound cluster.
	 */
	uint64_t cntpctl = read_cntpctl();

	write_cntpctl(clr_cntp_ctl_enable(cntpctl));
}

static void mt_cpu_save(unsigned long mpidr)
{
	struct core_context *core;

	core = get_core_data(mpidr);
	mt_save_generic_timer(core->timer_data);

	/* disable timer irq, and upper layer should enable it again. */
	stop_generic_timer();
}

static void mt_cpu_restore(unsigned long mpidr)
{
	struct core_context *core;

	core = get_core_data(mpidr);
	mt_restore_generic_timer(core->timer_data);
}

static void mt_platform_save_context(unsigned long mpidr)
{
	/* mcusys_save_context: */
	mt_cpu_save(mpidr);
}

static void mt_platform_restore_context(unsigned long mpidr)
{
	/* mcusys_restore_context: */
	mt_cpu_restore(mpidr);
}

237
238
static void plat_cpu_standby(plat_local_state_t cpu_state)
{
239
	u_register_t scr;
240
241
242
243
244
245
246
247

	scr = read_scr_el3();
	write_scr_el3(scr | SCR_IRQ_BIT);
	isb();
	dsb();
	wfi();
	write_scr_el3(scr);
}
248
249
250
251
252

/*******************************************************************************
 * MTK_platform handler called when an affinity instance is about to be turned
 * on. The level and mpidr determine the affinity instance.
 ******************************************************************************/
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
static uintptr_t secure_entrypoint;

static int plat_power_domain_on(unsigned long mpidr)
{
	int rc = PSCI_E_SUCCESS;
	unsigned long cpu_id;
	unsigned long cluster_id;
	uintptr_t rv;

	cpu_id = mpidr & MPIDR_CPU_MASK;
	cluster_id = mpidr & MPIDR_CLUSTER_MASK;

	if (cluster_id)
		rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw;
	else
		rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw;

	mmio_write_32(rv, secure_entrypoint);
	INFO("mt_on[%ld:%ld], entry %x\n",
		cluster_id, cpu_id, mmio_read_32(rv));

	spm_hotplug_on(mpidr);
	return rc;
}
277
278
279
280
281
282
283
284
285
286
287
288
289

/*******************************************************************************
 * MTK_platform handler called when an affinity instance is about to be turned
 * off. The level and mpidr determine the affinity instance. The 'state' arg.
 * allows the platform to decide whether the cluster is being turned off and
 * take apt actions.
 *
 * CAUTION: This function is called with coherent stacks so that caches can be
 * turned off, flushed and coherency disabled. There is no guarantee that caches
 * will remain turned on across calls to this function as each affinity level is
 * dealt with. So do not write & read global variables across calls. It will be
 * wise to do flush a write to the global to prevent unpredictable results.
 ******************************************************************************/
290
291
292
293
294
static void plat_power_domain_off(const psci_power_state_t *state)
{
	unsigned long mpidr = read_mpidr_el1();

	/* Prevent interrupts from spuriously waking up this cpu */
Koan-Sin Tan's avatar
Koan-Sin Tan committed
295
	gicv2_cpuif_disable();
296
297
298
299
300
301
302
303
304
305
306
307

	spm_hotplug_off(mpidr);

	trace_power_flow(mpidr, CPU_DOWN);

	if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
		/* Disable coherency if this cluster is to be turned off */
		plat_cci_disable();

		trace_power_flow(mpidr, CLUSTER_DOWN);
	}
}
308
309
310
311
312
313
314
315
316
317
318
319
320

/*******************************************************************************
 * MTK_platform handler called when an affinity instance is about to be
 * suspended. The level and mpidr determine the affinity instance. The 'state'
 * arg. allows the platform to decide whether the cluster is being turned off
 * and take apt actions.
 *
 * CAUTION: This function is called with coherent stacks so that caches can be
 * turned off, flushed and coherency disabled. There is no guarantee that caches
 * will remain turned on across calls to this function as each affinity level is
 * dealt with. So do not write & read global variables across calls. It will be
 * wise to do flush a write to the global to prevent unpredictable results.
 ******************************************************************************/
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
static void plat_power_domain_suspend(const psci_power_state_t *state)
{
	unsigned long mpidr = read_mpidr_el1();
	unsigned long cluster_id;
	unsigned long cpu_id;
	uintptr_t rv;

	cpu_id = mpidr & MPIDR_CPU_MASK;
	cluster_id = mpidr & MPIDR_CLUSTER_MASK;

	if (cluster_id)
		rv = (uintptr_t)&mt8173_mcucfg->mp1_rv_addr[cpu_id].rv_addr_lw;
	else
		rv = (uintptr_t)&mt8173_mcucfg->mp0_rv_addr[cpu_id].rv_addr_lw;

	mmio_write_32(rv, secure_entrypoint);

	if (MTK_SYSTEM_PWR_STATE(state) != MTK_LOCAL_STATE_OFF) {
		spm_mcdi_prepare_for_off_state(mpidr, MTK_PWR_LVL0);
		if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF)
			spm_mcdi_prepare_for_off_state(mpidr, MTK_PWR_LVL1);
	}

	mt_platform_save_context(mpidr);

	/* Perform the common cluster specific operations */
	if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
		/* Disable coherency if this cluster is to be turned off */
		plat_cci_disable();
	}

	if (MTK_SYSTEM_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
		disable_scu(mpidr);
		generic_timer_backup();
		spm_system_suspend();
		/* Prevent interrupts from spuriously waking up this cpu */
Koan-Sin Tan's avatar
Koan-Sin Tan committed
357
		gicv2_cpuif_disable();
358
359
	}
}
360
361
362
363
364
365
366
367

/*******************************************************************************
 * MTK_platform handler called when an affinity instance has just been powered
 * on after being turned off earlier. The level and mpidr determine the affinity
 * instance. The 'state' arg. allows the platform to decide whether the cluster
 * was turned off prior to wakeup and do what's necessary to setup it up
 * correctly.
 ******************************************************************************/
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
void mtk_system_pwr_domain_resume(void);

static void plat_power_domain_on_finish(const psci_power_state_t *state)
{
	unsigned long mpidr = read_mpidr_el1();

	assert(state->pwr_domain_state[MPIDR_AFFLVL0] == MTK_LOCAL_STATE_OFF);

	if ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) &&
		(state->pwr_domain_state[MTK_PWR_LVL2] == MTK_LOCAL_STATE_OFF))
		mtk_system_pwr_domain_resume();

	if (state->pwr_domain_state[MPIDR_AFFLVL1] == MTK_LOCAL_STATE_OFF) {
		plat_cci_enable();
		trace_power_flow(mpidr, CLUSTER_UP);
	}

	if ((PLAT_MAX_PWR_LVL > MTK_PWR_LVL1) &&
		(state->pwr_domain_state[MTK_PWR_LVL2] == MTK_LOCAL_STATE_OFF))
		return;

	/* Enable the gic cpu interface */
Koan-Sin Tan's avatar
Koan-Sin Tan committed
390
391
	gicv2_cpuif_enable();
	gicv2_pcpu_distif_init();
392
393
	trace_power_flow(mpidr, CPU_UP);
}
394
395
396
397
398
399

/*******************************************************************************
 * MTK_platform handler called when an affinity instance has just been powered
 * on after having been suspended earlier. The level and mpidr determine the
 * affinity instance.
 ******************************************************************************/
400
401
402
403
404
405
406
407
408
static void plat_power_domain_suspend_finish(const psci_power_state_t *state)
{
	unsigned long mpidr = read_mpidr_el1();

	if (state->pwr_domain_state[MTK_PWR_LVL0] == MTK_LOCAL_STATE_RET)
		return;

	if (MTK_SYSTEM_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
		/* Enable the gic cpu interface */
Koan-Sin Tan's avatar
Koan-Sin Tan committed
409
		plat_arm_gic_init();
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
		spm_system_suspend_finish();
		enable_scu(mpidr);
	}

	/* Perform the common cluster specific operations */
	if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF) {
		/* Enable coherency if this cluster was off */
		plat_cci_enable();
	}

	mt_platform_restore_context(mpidr);

	if (MTK_SYSTEM_PWR_STATE(state) != MTK_LOCAL_STATE_OFF) {
		spm_mcdi_finish_for_on_state(mpidr, MTK_PWR_LVL0);
		if (MTK_CLUSTER_PWR_STATE(state) == MTK_LOCAL_STATE_OFF)
			spm_mcdi_finish_for_on_state(mpidr, MTK_PWR_LVL1);
	}

Koan-Sin Tan's avatar
Koan-Sin Tan committed
428
	gicv2_pcpu_distif_init();
429
}
430

431
432
433
434
435
436
437
static void plat_get_sys_suspend_power_state(psci_power_state_t *req_state)
{
	assert(PLAT_MAX_PWR_LVL >= 2);

	for (int i = MPIDR_AFFLVL0; i <= PLAT_MAX_PWR_LVL; i++)
		req_state->pwr_domain_state[i] = MTK_LOCAL_STATE_OFF;
}
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

/*******************************************************************************
 * MTK handlers to shutdown/reboot the system
 ******************************************************************************/
static void __dead2 plat_system_off(void)
{
	INFO("MTK System Off\n");

	rtc_bbpu_power_down();

	wfi();
	ERROR("MTK System Off: operation not handled.\n");
	panic();
}

static void __dead2 plat_system_reset(void)
{
	/* Write the System Configuration Control Register */
	INFO("MTK System Reset\n");

458
459
460
	mmio_clrsetbits_32(MTK_WDT_BASE,
		(MTK_WDT_MODE_DUAL_MODE | MTK_WDT_MODE_IRQ),
		MTK_WDT_MODE_KEY);
461
462
463
464
465
466
467
468
	mmio_setbits_32(MTK_WDT_BASE, (MTK_WDT_MODE_KEY | MTK_WDT_MODE_EXTEN));
	mmio_setbits_32(MTK_WDT_SWRST, MTK_WDT_SWRST_KEY);

	wfi();
	ERROR("MTK System Reset: operation not handled.\n");
	panic();
}

469
#if !PSCI_EXTENDED_STATE_ID
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
static int plat_validate_power_state(unsigned int power_state,
					psci_power_state_t *req_state)
{
	int pstate = psci_get_pstate_type(power_state);
	int pwr_lvl = psci_get_pstate_pwrlvl(power_state);
	int i;

	assert(req_state);

	if (pwr_lvl > PLAT_MAX_PWR_LVL)
		return PSCI_E_INVALID_PARAMS;

	/* Sanity check the requested state */
	if (pstate == PSTATE_TYPE_STANDBY) {
		/*
		 * It's possible to enter standby only on power level 0
		 * Ignore any other power level.
		 */
		if (pwr_lvl != 0)
			return PSCI_E_INVALID_PARAMS;

		req_state->pwr_domain_state[MTK_PWR_LVL0] =
					MTK_LOCAL_STATE_RET;
	} else {
		for (i = 0; i <= pwr_lvl; i++)
			req_state->pwr_domain_state[i] =
					MTK_LOCAL_STATE_OFF;
	}

	/*
	 * We expect the 'state id' to be zero.
	 */
	if (psci_get_pstate_id(power_state))
		return PSCI_E_INVALID_PARAMS;

	return PSCI_E_SUCCESS;
}
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#else
int plat_validate_power_state(unsigned int power_state,
				psci_power_state_t *req_state)
{
	unsigned int state_id;
	int i;

	assert(req_state);

	/*
	 *  Currently we are using a linear search for finding the matching
	 *  entry in the idle power state array. This can be made a binary
	 *  search if the number of entries justify the additional complexity.
	 */
	for (i = 0; !!mtk_pm_idle_states[i]; i++) {
		if (power_state == mtk_pm_idle_states[i])
			break;
	}

	/* Return error if entry not found in the idle state array */
	if (!mtk_pm_idle_states[i])
		return PSCI_E_INVALID_PARAMS;

	i = 0;
	state_id = psci_get_pstate_id(power_state);

	/* Parse the State ID and populate the state info parameter */
	while (state_id) {
		req_state->pwr_domain_state[i++] = state_id &
						MTK_LOCAL_PSTATE_MASK;
		state_id >>= MTK_LOCAL_PSTATE_WIDTH;
	}

	return PSCI_E_SUCCESS;
}
#endif
543
544
545

void mtk_system_pwr_domain_resume(void)
{
546
	console_switch_state(CONSOLE_FLAG_BOOT);
547
548
549
550

	/* Assert system power domain is available on the platform */
	assert(PLAT_MAX_PWR_LVL >= MTK_PWR_LVL2);

Koan-Sin Tan's avatar
Koan-Sin Tan committed
551
	plat_arm_gic_init();
552
553

	console_switch_state(CONSOLE_FLAG_RUNTIME);
554
}
555

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
static const plat_psci_ops_t plat_plat_pm_ops = {
	.cpu_standby			= plat_cpu_standby,
	.pwr_domain_on			= plat_power_domain_on,
	.pwr_domain_on_finish		= plat_power_domain_on_finish,
	.pwr_domain_off			= plat_power_domain_off,
	.pwr_domain_suspend		= plat_power_domain_suspend,
	.pwr_domain_suspend_finish	= plat_power_domain_suspend_finish,
	.system_off			= plat_system_off,
	.system_reset			= plat_system_reset,
	.validate_power_state		= plat_validate_power_state,
	.get_sys_suspend_power_state	= plat_get_sys_suspend_power_state,
};

int plat_setup_psci_ops(uintptr_t sec_entrypoint,
			const plat_psci_ops_t **psci_ops)
{
	*psci_ops = &plat_plat_pm_ops;
	secure_entrypoint = sec_entrypoint;
	return 0;
}

/*
 * The PSCI generic code uses this API to let the platform participate in state
 * coordination during a power management operation. It compares the platform
 * specific local power states requested by each cpu for a given power domain
 * and returns the coordinated target power state that the domain should
 * enter. A platform assigns a number to a local power state. This default
 * implementation assumes that the platform assigns these numbers in order of
 * increasing depth of the power state i.e. for two power states X & Y, if X < Y
 * then X represents a shallower power state than Y. As a result, the
 * coordinated target local power state for a power domain will be the minimum
 * of the requested local power states.
 */
plat_local_state_t plat_get_target_pwr_state(unsigned int lvl,
					     const plat_local_state_t *states,
					     unsigned int ncpu)
{
	plat_local_state_t target = PLAT_MAX_OFF_STATE, temp;

	assert(ncpu);

	do {
		temp = *states++;
		if (temp < target)
			target = temp;
	} while (--ncpu);

	return target;
}