sp_min_setup.c 5.33 KB
Newer Older
1
2
3
4
5
6
7
8
/*
 * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>
#include <string.h>
9
10
11
12
13
14
15
16
17
18
19
20
21

#include <platform_def.h>

#include <arch_helpers.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <drivers/arm/gic_common.h>
#include <drivers/arm/gicv2.h>
#include <drivers/console.h>
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_tables.h>
#include <plat/common/platform.h>

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include "../qemu_private.h"

#if RESET_TO_SP_MIN
#error qemu does not support RESET_TO_SP_MIN
#endif

static entry_point_info_t bl33_image_ep_info;

/*
 * The next 3 constants identify the extents of the code, RO data region and the
 * limit of the BL3-1 image.  These addresses are used by the MMU setup code and
 * therefore they must be page-aligned.  It is the responsibility of the linker
 * script to ensure that __RO_START__, __RO_END__ & __BL31_END__ linker symbols
 * refer to page-aligned addresses.
 */
#define BL32_RO_BASE (unsigned long)(&__RO_START__)
#define BL32_RO_LIMIT (unsigned long)(&__RO_END__)
#define BL32_END (unsigned long)(&__BL32_END__)

#if USE_COHERENT_MEM
/*
 * The next 2 constants identify the extents of the coherent memory region.
 * These addresses are used by the MMU setup code and therefore they must be
 * page-aligned.  It is the responsibility of the linker script to ensure that
 * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols
 * refer to page-aligned addresses.
 */
#define BL32_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL32_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
#endif

/******************************************************************************
 * On a GICv2 system, the Group 1 secure interrupts are treated as Group 0
 * interrupts.
 *****************************************************************************/
#define PLATFORM_G1S_PROPS(grp)						\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_0, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_1, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_2, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_3, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_4, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_5, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_6, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL),	\
	INTR_PROP_DESC(QEMU_IRQ_SEC_SGI_7, GIC_HIGHEST_SEC_PRIORITY,	\
					   grp, GIC_INTR_CFG_LEVEL)

#define PLATFORM_G0_PROPS(grp)

static const interrupt_prop_t stih410_interrupt_props[] = {
	PLATFORM_G1S_PROPS(GICV2_INTR_GROUP0),
	PLATFORM_G0_PROPS(GICV2_INTR_GROUP0)
};

static unsigned int target_mask_array[PLATFORM_CORE_COUNT];

static const struct gicv2_driver_data plat_gicv2_driver_data = {
	.gicd_base = GICD_BASE,
	.gicc_base = GICC_BASE,
	.interrupt_props = stih410_interrupt_props,
	.interrupt_props_num = ARRAY_SIZE(stih410_interrupt_props),
	.target_masks = target_mask_array,
	.target_masks_num = ARRAY_SIZE(target_mask_array),
};

/*******************************************************************************
 * Return a pointer to the 'entry_point_info' structure of the next image for
 * the security state specified. BL33 corresponds to the non-secure image type
 * while BL32 corresponds to the secure image type. A NULL pointer is returned
 * if the image does not exist.
 ******************************************************************************/
entry_point_info_t *sp_min_plat_get_bl33_ep_info(void)
{
	entry_point_info_t *next_image_info = &bl33_image_ep_info;

	/*
	 * None of the images on the ARM development platforms can have 0x0
	 * as the entrypoint
	 */
	if (next_image_info->pc)
		return next_image_info;
	else
		return NULL;
}

113
114
void sp_min_early_platform_setup2(u_register_t arg0, u_register_t arg1,
		u_register_t arg2, u_register_t arg3)
115
{
116
	bl_params_t *params_from_bl2 = (bl_params_t *)arg0;
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

	/* Initialize the console to provide early debug support */
	console_init(PLAT_QEMU_BOOT_UART_BASE, PLAT_QEMU_BOOT_UART_CLK_IN_HZ,
			PLAT_QEMU_CONSOLE_BAUDRATE);

	ERROR("qemu sp_min, console init\n");
	/*
	 * Check params passed from BL2
	 */
	assert(params_from_bl2);
	assert(params_from_bl2->h.type == PARAM_BL_PARAMS);
	assert(params_from_bl2->h.version >= VERSION_2);

	bl_params_node_t *bl_params = params_from_bl2->head;

	/*
	 * Copy BL33 entry point information from BL2's address space.
	 */
	while (bl_params) {
		if (bl_params->image_id == BL33_IMAGE_ID)
			bl33_image_ep_info = *bl_params->ep_info;

		bl_params = bl_params->next_params_info;
	}

	if (!bl33_image_ep_info.pc)
		panic();
}

void sp_min_plat_arch_setup(void)
{
148
	qemu_configure_mmu_svc_mon(BL32_RO_BASE, BL32_END - BL32_RO_BASE,
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
				  BL32_RO_BASE, BL32_RO_LIMIT,
				  BL_COHERENT_RAM_BASE, BL_COHERENT_RAM_END);

}

void sp_min_platform_setup(void)
{
	/* Initialize the gic cpu and distributor interfaces */
	gicv2_driver_init(&plat_gicv2_driver_data);
	gicv2_distif_init();
	gicv2_pcpu_distif_init();
	gicv2_cpuif_enable();
}

unsigned int plat_get_syscnt_freq2(void)
{
	return SYS_COUNTER_FREQ_IN_TICKS;
}

void sp_min_plat_fiq_handler(uint32_t id)
{
	VERBOSE("[sp_min] interrupt #%d\n", id);
}