• David Horstmann's avatar
    feat(fdt): introduce wrapper function to read DT UUIDs · d13dbb6f
    David Horstmann authored
    
    TF-A does not have the capability to read UUIDs in string form
    from the device tree. This capability is useful for readability,
    so add a wrapper function, fdtw_read_uuid() to parse UUIDs from
    the DT.
    This function should parse a string of the form:
    
    "aabbccdd-eeff-4099-8877-665544332211"
    
    to the byte sequence in memory:
    
    [aa bb cc dd ee ff 40 99 88 77 66 55 44 33 22 11]
    
    Change-Id: I99a92fbeb40f4f4713f3458b36cb3863354d2bdf
    Signed-off-by: default avatarDavid Horstmann <david.horstmann@arm.com>
    d13dbb6f
fdt_wrappers.c 15.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
/*
 * Copyright (c) 2018-2021, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

/* Helper functions to offer easier navigation of Device Tree Blob */

#include <assert.h>
#include <errno.h>
#include <string.h>

#include <libfdt.h>

#include <common/debug.h>
#include <common/fdt_wrappers.h>
#include <common/uuid.h>

/*
 * Read cells from a given property of the given node. Any number of 32-bit
 * cells of the property can be read. Returns 0 on success, or a negative
 * FDT error value otherwise.
 */
int fdt_read_uint32_array(const void *dtb, int node, const char *prop_name,
			  unsigned int cells, uint32_t *value)
{
	const fdt32_t *prop;
	int value_len;

	assert(dtb != NULL);
	assert(prop_name != NULL);
	assert(value != NULL);
	assert(node >= 0);

	/* Access property and obtain its length (in bytes) */
	prop = fdt_getprop(dtb, node, prop_name, &value_len);
	if (prop == NULL) {
		WARN("Couldn't find property %s in dtb\n", prop_name);
		return -FDT_ERR_NOTFOUND;
	}

	/* Verify that property length can fill the entire array. */
	if (NCELLS((unsigned int)value_len) < cells) {
		WARN("Property length mismatch\n");
		return -FDT_ERR_BADVALUE;
	}

	for (unsigned int i = 0U; i < cells; i++) {
		value[i] = fdt32_to_cpu(prop[i]);
	}

	return 0;
}

int fdt_read_uint32(const void *dtb, int node, const char *prop_name,
		    uint32_t *value)
{
	return fdt_read_uint32_array(dtb, node, prop_name, 1, value);
}

uint32_t fdt_read_uint32_default(const void *dtb, int node,
				 const char *prop_name, uint32_t dflt_value)
{
	uint32_t ret = dflt_value;
	int err = fdt_read_uint32(dtb, node, prop_name, &ret);

	if (err < 0) {
		return dflt_value;
	}

	return ret;
}

int fdt_read_uint64(const void *dtb, int node, const char *prop_name,
		    uint64_t *value)
{
	uint32_t array[2] = {0, 0};
	int ret;

	ret = fdt_read_uint32_array(dtb, node, prop_name, 2, array);
	if (ret < 0) {
		return ret;
	}

	*value = ((uint64_t)array[0] << 32) | array[1];
	return 0;
}

/*
 * Read bytes from a given property of the given node. Any number of
 * bytes of the property can be read. The fdt pointer is updated.
 * Returns 0 on success, and -1 on error.
 */
int fdtw_read_bytes(const void *dtb, int node, const char *prop,
		    unsigned int length, void *value)
{
	const void *ptr;
	int value_len;

	assert(dtb != NULL);
	assert(prop != NULL);
	assert(value != NULL);
	assert(node >= 0);

	/* Access property and obtain its length (in bytes) */
	ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop),
					&value_len);
	if (ptr == NULL) {
		WARN("Couldn't find property %s in dtb\n", prop);
		return -1;
	}

	/* Verify that property length is not less than number of bytes */
	if ((unsigned int)value_len < length) {
		WARN("Property length mismatch\n");
		return -1;
	}

	(void)memcpy(value, ptr, length);

	return 0;
}

/*
 * Read string from a given property of the given node. Up to 'size - 1'
 * characters are read, and a NUL terminator is added. Returns 0 on success,
 * and -1 upon error.
 */
int fdtw_read_string(const void *dtb, int node, const char *prop,
		char *str, size_t size)
{
	const char *ptr;
	size_t len;

	assert(dtb != NULL);
	assert(node >= 0);
	assert(prop != NULL);
	assert(str != NULL);
	assert(size > 0U);

	ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop), NULL);
	if (ptr == NULL) {
		WARN("Couldn't find property %s in dtb\n", prop);
		return -1;
	}

	len = strlcpy(str, ptr, size);
	if (len >= size) {
		WARN("String of property %s in dtb has been truncated\n", prop);
		return -1;
	}

	return 0;
}

/*
 * Read UUID from a given property of the given node. Returns 0 on success,
 * and a negative value upon error.
 */
int fdtw_read_uuid(const void *dtb, int node, const char *prop,
		   unsigned int length, uint8_t *uuid)
{
	/* Buffer for UUID string (plus NUL terminator) */
	char uuid_string[UUID_STRING_LENGTH + 1U];
	int err;

	assert(dtb != NULL);
	assert(prop != NULL);
	assert(uuid != NULL);
	assert(node >= 0);

	if (length < UUID_BYTES_LENGTH) {
		return -EINVAL;
	}

	err = fdtw_read_string(dtb, node, prop, uuid_string,
			       UUID_STRING_LENGTH + 1U);
	if (err != 0) {
		return err;
	}

	if (read_uuid(uuid, uuid_string) != 0) {
		return -FDT_ERR_BADVALUE;
	}

	return 0;
}

/*
 * Write cells in place to a given property of the given node. At most 2 cells
 * of the property are written. Returns 0 on success, and -1 upon error.
 */
int fdtw_write_inplace_cells(void *dtb, int node, const char *prop,
		unsigned int cells, void *value)
{
	int err, len;

	assert(dtb != NULL);
	assert(prop != NULL);
	assert(value != NULL);
	assert(node >= 0);

	/* We expect either 1 or 2 cell property */
	assert(cells <= 2U);

	if (cells == 2U)
		*(uint64_t *)value = cpu_to_fdt64(*(uint64_t *)value);
	else
		*(uint32_t *)value = cpu_to_fdt32(*(uint32_t *)value);

	len = (int)cells * 4;

	/* Set property value in place */
	err = fdt_setprop_inplace(dtb, node, prop, value, len);
	if (err != 0) {
		WARN("Modify property %s failed with error %d\n", prop, err);
		return -1;
	}

	return 0;
}

/*
 * Write bytes in place to a given property of the given node.
 * Any number of bytes of the property can be written.
 * Returns 0 on success, and < 0 on error.
 */
int fdtw_write_inplace_bytes(void *dtb, int node, const char *prop,
			     unsigned int length, const void *data)
{
	const void *ptr;
	int namelen, value_len, err;

	assert(dtb != NULL);
	assert(prop != NULL);
	assert(data != NULL);
	assert(node >= 0);

	namelen = (int)strlen(prop);

	/* Access property and obtain its length in bytes */
	ptr = fdt_getprop_namelen(dtb, node, prop, namelen, &value_len);
	if (ptr == NULL) {
		WARN("Couldn't find property %s in dtb\n", prop);
		return -1;
	}

	/* Verify that property length is not less than number of bytes */
	if ((unsigned int)value_len < length) {
		WARN("Property length mismatch\n");
		return -1;
	}

	/* Set property value in place */
	err = fdt_setprop_inplace_namelen_partial(dtb, node, prop,
						  namelen, 0,
						  data, (int)length);
	if (err != 0) {
		WARN("Set property %s failed with error %d\n", prop, err);
	}

	return err;
}

static uint64_t fdt_read_prop_cells(const fdt32_t *prop, int nr_cells)
{
	uint64_t reg = fdt32_to_cpu(prop[0]);

	if (nr_cells > 1) {
		reg = (reg << 32) | fdt32_to_cpu(prop[1]);
	}

	return reg;
}

int fdt_get_reg_props_by_index(const void *dtb, int node, int index,
			       uintptr_t *base, size_t *size)
{
	const fdt32_t *prop;
	int parent, len;
	int ac, sc;
	int cell;

	parent = fdt_parent_offset(dtb, node);
	if (parent < 0) {
		return -FDT_ERR_BADOFFSET;
	}

	ac = fdt_address_cells(dtb, parent);
	sc = fdt_size_cells(dtb, parent);

	cell = index * (ac + sc);

	prop = fdt_getprop(dtb, node, "reg", &len);
	if (prop == NULL) {
		WARN("Couldn't find \"reg\" property in dtb\n");
		return -FDT_ERR_NOTFOUND;
	}

	if (((cell + ac + sc) * (int)sizeof(uint32_t)) > len) {
		return -FDT_ERR_BADVALUE;
	}

	if (base != NULL) {
		*base = (uintptr_t)fdt_read_prop_cells(&prop[cell], ac);
	}

	if (size != NULL) {
		*size = (size_t)fdt_read_prop_cells(&prop[cell + ac], sc);
	}

	return 0;
}

/*******************************************************************************
 * This function fills reg node info (base & size) with an index found by
 * checking the reg-names node.
 * Returns 0 on success and a negative FDT error code on failure.
 ******************************************************************************/
int fdt_get_reg_props_by_name(const void *dtb, int node, const char *name,
			      uintptr_t *base, size_t *size)
{
	int index;

	index = fdt_stringlist_search(dtb, node, "reg-names", name);
	if (index < 0) {
		return index;
	}

	return fdt_get_reg_props_by_index(dtb, node, index, base, size);
}

/*******************************************************************************
 * This function gets the stdout path node.
 * It reads the value indicated inside the device tree.
 * Returns node offset on success and a negative FDT error code on failure.
 ******************************************************************************/
int fdt_get_stdout_node_offset(const void *dtb)
{
	int node;
	const char *prop, *path;
	int len;

	/* The /secure-chosen node takes precedence over the standard one. */
	node = fdt_path_offset(dtb, "/secure-chosen");
	if (node < 0) {
		node = fdt_path_offset(dtb, "/chosen");
		if (node < 0) {
			return -FDT_ERR_NOTFOUND;
		}
	}

	prop = fdt_getprop(dtb, node, "stdout-path", NULL);
	if (prop == NULL) {
		return -FDT_ERR_NOTFOUND;
	}

	/* Determine the actual path length, as a colon terminates the path. */
	path = strchr(prop, ':');
	if (path == NULL) {
		len = strlen(prop);
	} else {
		len = path - prop;
	}

	/* Aliases cannot start with a '/', so it must be the actual path. */
	if (prop[0] == '/') {
		return fdt_path_offset_namelen(dtb, prop, len);
	}

	/* Lookup the alias, as this contains the actual path. */
	path = fdt_get_alias_namelen(dtb, prop, len);
	if (path == NULL) {
		return -FDT_ERR_NOTFOUND;
	}

	return fdt_path_offset(dtb, path);
}


/*******************************************************************************
 * Only devices which are direct children of root node use CPU address domain.
 * All other devices use addresses that are local to the device node and cannot
 * directly used by CPU. Device tree provides an address translation mechanism
 * through "ranges" property which provides mappings from local address space to
 * parent address space. Since a device could be a child of a child node to the
 * root node, there can be more than one level of address translation needed to
 * map the device local address space to CPU address space.
 * fdtw_translate_address() API performs address translation of a local address
 * to a global address with help of various helper functions.
 ******************************************************************************/

static bool fdtw_xlat_hit(const uint32_t *value, int child_addr_size,
		int parent_addr_size, int range_size, uint64_t base_address,
		uint64_t *translated_addr)
{
	uint64_t local_address, parent_address, addr_range;

	local_address = fdt_read_prop_cells(value, child_addr_size);
	parent_address = fdt_read_prop_cells(value + child_addr_size,
				parent_addr_size);
	addr_range = fdt_read_prop_cells(value + child_addr_size +
				parent_addr_size,
				range_size);
	VERBOSE("DT: Address %llx mapped to %llx with range %llx\n",
		local_address, parent_address, addr_range);

	/* Perform range check */
	if ((base_address < local_address) ||
		(base_address >= local_address + addr_range)) {
		return false;
	}

	/* Found hit for the addr range that needs to be translated */
	*translated_addr = parent_address + (base_address - local_address);
	VERBOSE("DT: child address %llx mapped to %llx in parent bus\n",
			local_address, parent_address);
	return true;
}

#define ILLEGAL_ADDR	ULL(~0)

static uint64_t fdtw_search_all_xlat_entries(const void *dtb,
				const struct fdt_property *ranges_prop,
				int local_bus, uint64_t base_address)
{
	uint64_t translated_addr;
	const uint32_t *next_entry;
	int parent_bus_node, nxlat_entries, length;
	int self_addr_cells, parent_addr_cells, self_size_cells, ncells_xlat;

	/*
	 * The number of cells in one translation entry in ranges is the sum of
	 * the following values:
	 * self#address-cells + parent#address-cells + self#size-cells
	 * Ex: the iofpga ranges property has one translation entry with 4 cells
	 * They represent iofpga#addr-cells + motherboard#addr-cells + iofpga#size-cells
	 *              = 1                 + 2                      + 1
	 */

	parent_bus_node = fdt_parent_offset(dtb, local_bus);
	self_addr_cells = fdt_address_cells(dtb, local_bus);
	self_size_cells = fdt_size_cells(dtb, local_bus);
	parent_addr_cells = fdt_address_cells(dtb, parent_bus_node);

	/* Number of cells per translation entry i.e., mapping */
	ncells_xlat = self_addr_cells + parent_addr_cells + self_size_cells;

	assert(ncells_xlat > 0);

	/*
	 * Find the number of translations(mappings) specified in the current
	 * `ranges` property. Note that length represents number of bytes and
	 * is stored in big endian mode.
	 */
	length = fdt32_to_cpu(ranges_prop->len);
	nxlat_entries = (length/sizeof(uint32_t))/ncells_xlat;

	assert(nxlat_entries > 0);

	next_entry = (const uint32_t *)ranges_prop->data;

	/* Iterate over the entries in the "ranges" */
	for (int i = 0; i < nxlat_entries; i++) {
		if (fdtw_xlat_hit(next_entry, self_addr_cells,
				parent_addr_cells, self_size_cells, base_address,
				&translated_addr)){
			return translated_addr;
		}
		next_entry = next_entry + ncells_xlat;
	}

	INFO("DT: No translation found for address %llx in node %s\n",
		base_address, fdt_get_name(dtb, local_bus, NULL));
	return ILLEGAL_ADDR;
}


/*******************************************************************************
 * address mapping needs to be done recursively starting from current node to
 * root node through all intermediate parent nodes.
 * Sample device tree is shown here:

smb@0,0 {
	compatible = "simple-bus";

	#address-cells = <2>;
	#size-cells = <1>;
	ranges = <0 0 0 0x08000000 0x04000000>,
		 <1 0 0 0x14000000 0x04000000>,
		 <2 0 0 0x18000000 0x04000000>,
		 <3 0 0 0x1c000000 0x04000000>,
		 <4 0 0 0x0c000000 0x04000000>,
		 <5 0 0 0x10000000 0x04000000>;

	motherboard {
		arm,v2m-memory-map = "rs1";
		compatible = "arm,vexpress,v2m-p1", "simple-bus";
		#address-cells = <2>;
		#size-cells = <1>;
		ranges;

		iofpga@3,00000000 {
			compatible = "arm,amba-bus", "simple-bus";
			#address-cells = <1>;
			#size-cells = <1>;
			ranges = <0 3 0 0x200000>;
			v2m_serial1: uart@a0000 {
				compatible = "arm,pl011", "arm,primecell";
				reg = <0x0a0000 0x1000>;
				interrupts = <0 6 4>;
				clocks = <&v2m_clk24mhz>, <&v2m_clk24mhz>;
				clock-names = "uartclk", "apb_pclk";
		};
	};
};

 * As seen above, there are 3 levels of address translations needed. An empty
 * `ranges` property denotes identity mapping (as seen in `motherboard` node).
 * Each ranges property can map a set of child addresses to parent bus. Hence
 * there can be more than 1 (translation) entry in the ranges property as seen
 * in the `smb` node which has 6 translation entries.
 ******************************************************************************/

/* Recursive implementation */
uint64_t fdtw_translate_address(const void *dtb, int node,
				uint64_t base_address)
{
	int length, local_bus_node;
	const char *node_name;
	uint64_t global_address;

	local_bus_node = fdt_parent_offset(dtb, node);
	node_name = fdt_get_name(dtb, local_bus_node, NULL);

	/*
	 * In the example given above, starting from the leaf node:
	 * uart@a000 represents the current node
	 * iofpga@3,00000000 represents the local bus
	 * motherboard represents the parent bus
	 */

	/* Read the ranges property */
	const struct fdt_property *property = fdt_get_property(dtb,
					local_bus_node, "ranges", &length);

	if (property == NULL) {
		if (local_bus_node == 0) {
			/*
			 * root node doesn't have range property as addresses
			 * are in CPU address space.
			 */
			return base_address;
		}
		INFO("DT: Couldn't find ranges property in node %s\n",
			node_name);
		return ILLEGAL_ADDR;
	} else if (length == 0) {
		/* empty ranges indicates identity map to parent bus */
		return fdtw_translate_address(dtb, local_bus_node, base_address);
	}

	VERBOSE("DT: Translation lookup in node %s at offset %d\n", node_name,
		local_bus_node);
	global_address = fdtw_search_all_xlat_entries(dtb, property,
				local_bus_node, base_address);

	if (global_address == ILLEGAL_ADDR) {
		return ILLEGAL_ADDR;
	}

	/* Translate the local device address recursively */
	return fdtw_translate_address(dtb, local_bus_node, global_address);
}