Unverified Commit 318c2f97 authored by Antonio Niño Díaz's avatar Antonio Niño Díaz Committed by GitHub
Browse files

Merge pull request #1646 from Andre-ARM/allwinner/pmic-v2

Allwinner/pmic v2
parents 55dd52a3 7db0c960
/*
* Copyright (c) 2017-2018 ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <debug.h>
#include <delay_timer.h>
#include <errno.h>
#include <mmio.h>
#include <sunxi_mmap.h>
#define RSB_CTRL 0x00
#define RSB_CCR 0x04
#define RSB_INTE 0x08
#define RSB_STAT 0x0c
#define RSB_DADDR0 0x10
#define RSB_DLEN 0x18
#define RSB_DATA0 0x1c
#define RSB_LCR 0x24
#define RSB_PMCR 0x28
#define RSB_CMD 0x2c
#define RSB_SADDR 0x30
#define RSBCMD_SRTA 0xE8
#define RSBCMD_RD8 0x8B
#define RSBCMD_RD16 0x9C
#define RSBCMD_RD32 0xA6
#define RSBCMD_WR8 0x4E
#define RSBCMD_WR16 0x59
#define RSBCMD_WR32 0x63
#define MAX_TRIES 100000
static int rsb_wait_bit(const char *desc, unsigned int offset, uint32_t mask)
{
uint32_t reg, tries = MAX_TRIES;
do
reg = mmio_read_32(SUNXI_R_RSB_BASE + offset);
while ((reg & mask) && --tries); /* transaction in progress */
if (reg & mask) {
ERROR("%s: timed out\n", desc);
return -ETIMEDOUT;
}
return 0;
}
static int rsb_wait_stat(const char *desc)
{
uint32_t reg;
int ret = rsb_wait_bit(desc, RSB_CTRL, BIT(7));
if (ret)
return ret;
reg = mmio_read_32(SUNXI_R_RSB_BASE + RSB_STAT);
if (reg == 0x01)
return 0;
ERROR("%s: 0x%x\n", desc, reg);
return -reg;
}
/* Initialize the RSB controller. */
int rsb_init_controller(void)
{
mmio_write_32(SUNXI_R_RSB_BASE + RSB_CTRL, 0x01); /* soft reset */
return rsb_wait_bit("RSB: reset controller", RSB_CTRL, BIT(0));
}
int rsb_read(uint8_t rt_addr, uint8_t reg_addr)
{
int ret;
mmio_write_32(SUNXI_R_RSB_BASE + RSB_CMD, RSBCMD_RD8); /* read a byte */
mmio_write_32(SUNXI_R_RSB_BASE + RSB_SADDR, rt_addr << 16);
mmio_write_32(SUNXI_R_RSB_BASE + RSB_DADDR0, reg_addr);
mmio_write_32(SUNXI_R_RSB_BASE + RSB_CTRL, 0x80);/* start transaction */
ret = rsb_wait_stat("RSB: read command");
if (ret)
return ret;
return mmio_read_32(SUNXI_R_RSB_BASE + RSB_DATA0) & 0xff; /* result */
}
int rsb_write(uint8_t rt_addr, uint8_t reg_addr, uint8_t value)
{
mmio_write_32(SUNXI_R_RSB_BASE + RSB_CMD, RSBCMD_WR8); /* byte write */
mmio_write_32(SUNXI_R_RSB_BASE + RSB_SADDR, rt_addr << 16);
mmio_write_32(SUNXI_R_RSB_BASE + RSB_DADDR0, reg_addr);
mmio_write_32(SUNXI_R_RSB_BASE + RSB_DATA0, value);
mmio_write_32(SUNXI_R_RSB_BASE + RSB_CTRL, 0x80);/* start transaction */
return rsb_wait_stat("RSB: write command");
}
int rsb_set_device_mode(uint32_t device_mode)
{
mmio_write_32(SUNXI_R_RSB_BASE + RSB_PMCR,
(device_mode & 0x00ffffff) | BIT(31));
return rsb_wait_bit("RSB: set device to RSB", RSB_PMCR, BIT(31));
}
int rsb_set_bus_speed(uint32_t source_freq, uint32_t bus_freq)
{
uint32_t reg;
if (bus_freq == 0)
return -EINVAL;
reg = source_freq / bus_freq;
if (reg < 2)
return -EINVAL;
reg = reg / 2 - 1;
reg |= (1U << 8); /* one cycle of CD output delay */
mmio_write_32(SUNXI_R_RSB_BASE + RSB_CCR, reg);
return 0;
}
/* Initialize the RSB PMIC connection. */
int rsb_assign_runtime_address(uint16_t hw_addr, uint8_t rt_addr)
{
mmio_write_32(SUNXI_R_RSB_BASE + RSB_SADDR, hw_addr | (rt_addr << 16));
mmio_write_32(SUNXI_R_RSB_BASE + RSB_CMD, RSBCMD_SRTA);
mmio_write_32(SUNXI_R_RSB_BASE + RSB_CTRL, 0x80);
return rsb_wait_stat("RSB: set run-time address");
}
/*
* Copyright (c) 2017-2018 ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef SUNXI_RSB_H
#define SUNXI_RSB_H
#include <stdint.h>
int rsb_init_controller(void);
int rsb_set_bus_speed(uint32_t source_freq, uint32_t bus_freq);
int rsb_set_device_mode(uint32_t device_mode);
int rsb_assign_runtime_address(uint16_t hw_addr, uint8_t rt_addr);
int rsb_read(uint8_t rt_addr, uint8_t reg_addr);
int rsb_write(uint8_t rt_addr, uint8_t reg_addr, uint8_t value);
#endif
#
# Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
include lib/xlat_tables_v2/xlat_tables.mk
AW_PLAT := plat/allwinner
PLAT_INCLUDES := -Iinclude/plat/arm/common \
-Iinclude/plat/arm/common/aarch64 \
-I${AW_PLAT}/common/include \
-I${AW_PLAT}/${PLAT}/include
include lib/libfdt/libfdt.mk
PLAT_BL_COMMON_SOURCES := drivers/console/${ARCH}/console.S \
drivers/ti/uart/${ARCH}/16550_console.S \
${XLAT_TABLES_LIB_SRCS} \
${AW_PLAT}/common/plat_helpers.S \
${AW_PLAT}/common/sunxi_common.c
BL31_SOURCES += drivers/arm/gic/common/gic_common.c \
drivers/arm/gic/v2/gicv2_helpers.c \
drivers/arm/gic/v2/gicv2_main.c \
drivers/delay_timer/delay_timer.c \
drivers/delay_timer/generic_delay_timer.c \
lib/cpus/${ARCH}/cortex_a53.S \
plat/common/plat_gicv2.c \
plat/common/plat_psci_common.c \
${AW_PLAT}/common/sunxi_bl31_setup.c \
${AW_PLAT}/common/sunxi_cpu_ops.c \
${AW_PLAT}/common/sunxi_pm.c \
${AW_PLAT}/${PLAT}/sunxi_power.c \
${AW_PLAT}/common/sunxi_security.c \
${AW_PLAT}/common/sunxi_topology.c
# The bootloader is guaranteed to only run on CPU 0 by the boot ROM.
COLD_BOOT_SINGLE_CPU := 1
# Enable workarounds for Cortex-A53 errata. Allwinner uses at least r0p4.
ERRATA_A53_835769 := 1
ERRATA_A53_843419 := 1
ERRATA_A53_855873 := 1
MULTI_CONSOLE_API := 1
# The reset vector can be changed for each CPU.
PROGRAMMABLE_RESET_ADDRESS := 1
# Allow mapping read-only data as execute-never.
SEPARATE_CODE_AND_RODATA := 1
# BL31 gets loaded alongside BL33 (U-Boot) by U-Boot's SPL
RESET_TO_BL31 := 1
# We are short on memory, so save 3.5KB by not having an extra coherent page.
USE_COHERENT_MEM := 0
# turn_off_core.S
#
# Copyright (c) 2018, Andre Przywara <osp@andrep.de>
# SPDX-License-Identifier: BSD-3-Clause
#
# OpenRISC assembly to turn off an ARM core on an Allwinner SoC from
# the arisc management controller.
# Generate a binary representation with:
# $ or1k-elf-as -c -o turn_off_core.o turn_off_core.S
# $ or1k-elf-objcopy -O binary --reverse-bytes=4 turn_off_core.o \
# turn_off_core.bin
# The encoded instructions go into an array defined in
# plat/allwinner/sun50i_*/include/core_off_arisc.h, to be handed off to
# the arisc processor.
#
# This routine is meant to be called directly from arisc reset (put the
# start address in the reset vector), to be actually triggered by that
# very ARM core to be turned off.
# It expects the core number presented as a mask in the upper half of
# r3, so to be patched in the lower 16 bits of the first instruction,
# overwriting the 0 in this code here.
# The code will do the following:
# - Read the C_CPU_STATUS register, which contains the status of the WFI
# lines of each of the four A53 cores.
# - Loop until the core in question reaches WFI.
# - Using that mask, activate the core output clamps by setting the
# respective core bit in CPUX_PWROFF_GATING_REG (0x1f01500).
# Note that the clamp for core 0 covers more than just the core, activating
# it hangs the whole system. So we skip this step for core 0.
# - Using the negated mask, assert the core's reset line by clearing the
# respective bit in C_RST_CTRL (0x1f01c30).
# - Finally turn off the core's power switch by writing 0xff to the
# respective CPUx_PWR_SWITCH_REG (0x1f01540 ff.)
# - Assert the arisc's own reset to end execution.
# This also signals other arisc users that the chip is free again.
# So in C this would look like:
# while (!(readl(0x1700030) & (1U << core_nr)))
# ;
# if (core_nr != 0)
# writel(readl(0x1f01500) | (1U << core_nr), 0x1f01500);
# writel(readl(0x1f01c30) & ~(1U << core_nr), 0x1f01c30);
# writel(0xff, 0x1f01540 + (core_nr * 4));
# (using A64/H5 addresses)
.text
_start:
l.movhi r3, 0 # FIXUP! with core mask
l.movhi r0, 0 # clear r0
l.movhi r13, 0x170 # r13: CPU_CFG_BASE=0x01700000
wait_wfi:
l.lwz r5, 0x30(r13) # load C_CPU_STATUS
l.and r5, r5, r3 # mask requested core
l.sfeq r5, r0 # is it not yet in WFI?
l.bf wait_wfi # try again
l.srli r6, r3, 16 # move mask to lower 16 bits
l.sfeqi r6, 1 # core 0 is special
l.bf 1f # don't touch the bit for core 0
l.movhi r13, 0x1f0 # address of R_CPUCFG (delay)
l.lwz r5, 0x1500(r13) # core output clamps
l.or r5, r5, r6 # set bit to ...
l.sw 0x1500(r13), r5 # ... activate for our core
1: l.lwz r5, 0x1c30(r13) # CPU power-on reset
l.xori r6, r6, -1 # negate core mask
l.and r5, r5, r6 # clear bit to ...
l.sw 0x1c30(r13), r5 # ... assert for our core
l.ff1 r6, r3 # get core number from high mask
l.addi r6, r6, -17 # convert to 0-3
l.slli r6, r6, 2 # r5: core number*4 (0-12)
l.add r6, r6, r13 # add to base address
l.ori r5, r0, 0xff # 0xff means all switches off
l.sw 0x1540(r6), r5 # core power switch registers
reset: l.sw 0x1c00(r13),r0 # pull down our own reset line
l.j reset # just in case ....
l.nop 0x0 # (delay slot)
# same as above, but with the MMIO addresses matching the H6 SoC
_start_h6:
l.movhi r3, 0 # FIXUP! with core mask
l.movhi r0, 0 # clear r0
l.movhi r13, 0x901 # r13: CPU_CFG_BASE=0x09010000
1:
l.lwz r5, 0x80(r13) # load C_CPU_STATUS
l.and r5, r5, r3 # mask requested core
l.sfeq r5, r0 # is it not yet in WFI?
l.bf 1b # try again
l.srli r6, r3, 16 # move mask to lower 16 bits(ds)
l.sfeqi r6, 1 # core 0 is special
l.bf 1f # don't touch the bit for core 0
l.movhi r13, 0x700 # address of R_CPUCFG (ds)
l.lwz r5, 0x0444(r13) # core output clamps
l.or r5, r5, r6 # set bit to ...
l.sw 0x0444(r13), r5 # ... activate for our core
1: l.lwz r5, 0x0440(r13) # CPU power-on reset
l.xori r6, r6, -1 # negate core mask
l.and r5, r5, r6 # clear bit to ...
l.sw 0x0440(r13), r5 # ... assert for our core
l.ff1 r6, r3 # get core number from high mask
l.addi r6, r6, -17 # convert to 0-3
l.slli r6, r6, 2 # r5: core number*4 (0-12)
l.add r6, r6, r13 # add to base address
l.ori r5, r0, 0xff # 0xff means all switches off
l.sw 0x0450(r6), r5 # core power switch registers
1: l.sw 0x0400(r13),r0 # pull down our own reset line
l.j 1b # just in case ...
l.nop 0x0 # (delay slot)
...@@ -18,11 +18,17 @@ ...@@ -18,11 +18,17 @@
/* The traditional U-Boot load address is 160MB into DRAM, so at 0x4a000000 */ /* The traditional U-Boot load address is 160MB into DRAM, so at 0x4a000000 */
#define PLAT_SUNXI_NS_IMAGE_OFFSET (SUNXI_DRAM_BASE + (160U << 20)) #define PLAT_SUNXI_NS_IMAGE_OFFSET (SUNXI_DRAM_BASE + (160U << 20))
/* How much memory to reserve as secure for BL32, if configured */
#define SUNXI_DRAM_SEC_SIZE (32U << 20)
/* How much DRAM to map (to map BL33, for fetching the DTB from U-Boot) */
#define SUNXI_DRAM_MAP_SIZE (64U << 20)
#define CACHE_WRITEBACK_SHIFT 6 #define CACHE_WRITEBACK_SHIFT 6
#define CACHE_WRITEBACK_GRANULE (1 << CACHE_WRITEBACK_SHIFT) #define CACHE_WRITEBACK_GRANULE (1 << CACHE_WRITEBACK_SHIFT)
#define MAX_MMAP_REGIONS (4 + PLATFORM_MMAP_REGIONS) #define MAX_MMAP_REGIONS (3 + PLATFORM_MMAP_REGIONS)
#define MAX_XLAT_TABLES 2 #define MAX_XLAT_TABLES 1
#define PLAT_MAX_PWR_LVL_STATES U(2) #define PLAT_MAX_PWR_LVL_STATES U(2)
#define PLAT_MAX_RET_STATE U(1) #define PLAT_MAX_RET_STATE U(1)
...@@ -34,13 +40,13 @@ ...@@ -34,13 +40,13 @@
PLATFORM_CORE_COUNT) PLATFORM_CORE_COUNT)
#define PLAT_PHY_ADDR_SPACE_SIZE (1ULL << 32) #define PLAT_PHY_ADDR_SPACE_SIZE (1ULL << 32)
#define PLAT_VIRT_ADDR_SPACE_SIZE (1ULL << 32) #define PLAT_VIRT_ADDR_SPACE_SIZE (1ULL << 28)
#define PLATFORM_CLUSTER_COUNT 1 #define PLATFORM_CLUSTER_COUNT 1
#define PLATFORM_CORE_COUNT (PLATFORM_CLUSTER_COUNT * \ #define PLATFORM_CORE_COUNT (PLATFORM_CLUSTER_COUNT * \
PLATFORM_MAX_CPUS_PER_CLUSTER) PLATFORM_MAX_CPUS_PER_CLUSTER)
#define PLATFORM_MAX_CPUS_PER_CLUSTER 4 #define PLATFORM_MAX_CPUS_PER_CLUSTER 4
#define PLATFORM_MMAP_REGIONS 3 #define PLATFORM_MMAP_REGIONS 4
#define PLATFORM_STACK_SIZE (0x1000 / PLATFORM_CORE_COUNT) #define PLATFORM_STACK_SIZE (0x1000 / PLATFORM_CORE_COUNT)
#ifndef SPD_none #ifndef SPD_none
......
...@@ -14,4 +14,8 @@ ...@@ -14,4 +14,8 @@
#define SUNXI_UART0_BAUDRATE 115200 #define SUNXI_UART0_BAUDRATE 115200
#define SUNXI_UART0_CLK_IN_HZ SUNXI_OSC24M_CLK_IN_HZ #define SUNXI_UART0_CLK_IN_HZ SUNXI_OSC24M_CLK_IN_HZ
#define SUNXI_SOC_A64 0x1689
#define SUNXI_SOC_H5 0x1718
#define SUNXI_SOC_H6 0x1728
#endif /* __SUNXI_DEF_H__ */ #endif /* __SUNXI_DEF_H__ */
...@@ -4,19 +4,23 @@ ...@@ -4,19 +4,23 @@
* SPDX-License-Identifier: BSD-3-Clause * SPDX-License-Identifier: BSD-3-Clause
*/ */
#ifndef __SUNXI_PRIVATE_H__ #ifndef SUNXI_PRIVATE_H
#define __SUNXI_PRIVATE_H__ #define SUNXI_PRIVATE_H
void sunxi_configure_mmu_el3(int flags); void sunxi_configure_mmu_el3(int flags);
void sunxi_cpu_off(unsigned int cluster, unsigned int core);
void sunxi_cpu_on(unsigned int cluster, unsigned int core); void sunxi_cpu_on(unsigned int cluster, unsigned int core);
void sunxi_cpu_off(unsigned int cluster, unsigned int core);
void sunxi_disable_secondary_cpus(unsigned int primary_cpu); void sunxi_disable_secondary_cpus(unsigned int primary_cpu);
void __dead2 sunxi_power_down(void);
uint16_t sunxi_read_soc_id(void); int sunxi_pmic_setup(uint16_t socid, const void *fdt);
void sunxi_pmic_setup(void);
void sunxi_security_setup(void); void sunxi_security_setup(void);
void __dead2 sunxi_power_down(void); uint16_t sunxi_read_soc_id(void);
void sunxi_set_gpio_out(char port, int pin, bool level_high);
int sunxi_init_platform_r_twi(uint16_t socid, bool use_rsb);
void sunxi_execute_arisc_code(uint32_t *code, size_t size,
int patch_offset, uint16_t param);
#endif /* __SUNXI_PRIVATE_H__ */ #endif /* SUNXI_PRIVATE_H */
...@@ -10,13 +10,14 @@ ...@@ -10,13 +10,14 @@
#include <debug.h> #include <debug.h>
#include <generic_delay_timer.h> #include <generic_delay_timer.h>
#include <gicv2.h> #include <gicv2.h>
#include <libfdt.h>
#include <platform.h> #include <platform.h>
#include <platform_def.h> #include <platform_def.h>
#include <sunxi_def.h> #include <sunxi_def.h>
#include <sunxi_mmap.h> #include <sunxi_mmap.h>
#include <sunxi_private.h>
#include <uart_16550.h> #include <uart_16550.h>
#include "sunxi_private.h"
static entry_point_info_t bl32_image_ep_info; static entry_point_info_t bl32_image_ep_info;
static entry_point_info_t bl33_image_ep_info; static entry_point_info_t bl33_image_ep_info;
...@@ -28,6 +29,47 @@ static const gicv2_driver_data_t sunxi_gic_data = { ...@@ -28,6 +29,47 @@ static const gicv2_driver_data_t sunxi_gic_data = {
.gicc_base = SUNXI_GICC_BASE, .gicc_base = SUNXI_GICC_BASE,
}; };
/*
* Try to find a DTB loaded in memory by previous stages.
*
* At the moment we implement a heuristic to find the DTB attached to U-Boot:
* U-Boot appends its DTB to the end of the image. Assuming that BL33 is
* U-Boot, try to find the size of the U-Boot image to learn the DTB address.
* The generic ARMv8 U-Boot image contains the load address and its size
* as u64 variables at the beginning of the image. There might be padding
* or other headers before that data, so scan the first 2KB after the BL33
* entry point to find the load address, which should be followed by the
* size. Adding those together gives us the address of the DTB.
*/
static void *sunxi_find_dtb(void)
{
uint64_t *u_boot_base;
int i;
u_boot_base = (void *)(SUNXI_DRAM_VIRT_BASE + SUNXI_DRAM_SEC_SIZE);
for (i = 0; i < 2048 / sizeof(uint64_t); i++) {
uint32_t *dtb_base;
if (u_boot_base[i] != PLAT_SUNXI_NS_IMAGE_OFFSET)
continue;
/* Does the suspected U-Boot size look anyhow reasonable? */
if (u_boot_base[i + 1] >= 256 * 1024 * 1024)
continue;
/* end of the image: base address + size */
dtb_base = (void *)((char *)u_boot_base + u_boot_base[i + 1]);
if (fdt_check_header(dtb_base) != 0)
continue;
return dtb_base;
}
return NULL;
}
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1, void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
u_register_t arg2, u_register_t arg3) u_register_t arg2, u_register_t arg3)
{ {
...@@ -66,15 +108,16 @@ void bl31_platform_setup(void) ...@@ -66,15 +108,16 @@ void bl31_platform_setup(void)
{ {
const char *soc_name; const char *soc_name;
uint16_t soc_id = sunxi_read_soc_id(); uint16_t soc_id = sunxi_read_soc_id();
void *fdt;
switch (soc_id) { switch (soc_id) {
case 0x1689: case SUNXI_SOC_A64:
soc_name = "A64/H64/R18"; soc_name = "A64/H64/R18";
break; break;
case 0x1718: case SUNXI_SOC_H5:
soc_name = "H5"; soc_name = "H5";
break; break;
case 0x1728: case SUNXI_SOC_H6:
soc_name = "H6"; soc_name = "H6";
break; break;
default: default:
...@@ -85,6 +128,18 @@ void bl31_platform_setup(void) ...@@ -85,6 +128,18 @@ void bl31_platform_setup(void)
generic_delay_timer_init(); generic_delay_timer_init();
fdt = sunxi_find_dtb();
if (fdt) {
const char *model;
int length;
model = fdt_getprop(fdt, 0, "model", &length);
NOTICE("BL31: Found U-Boot DTB at %p, model: %s\n", fdt,
model ?: "unknown");
} else {
NOTICE("BL31: No DTB found.\n");
}
/* Configure the interrupt controller */ /* Configure the interrupt controller */
gicv2_driver_init(&sunxi_gic_data); gicv2_driver_init(&sunxi_gic_data);
gicv2_distif_init(); gicv2_distif_init();
...@@ -93,7 +148,7 @@ void bl31_platform_setup(void) ...@@ -93,7 +148,7 @@ void bl31_platform_setup(void)
sunxi_security_setup(); sunxi_security_setup();
sunxi_pmic_setup(); sunxi_pmic_setup(soc_id, fdt);
INFO("BL31: Platform setup done\n"); INFO("BL31: Platform setup done\n");
} }
......
...@@ -4,21 +4,28 @@ ...@@ -4,21 +4,28 @@
* SPDX-License-Identifier: BSD-3-Clause * SPDX-License-Identifier: BSD-3-Clause
*/ */
#include <arch_helpers.h>
#include <debug.h>
#include <errno.h>
#include <mmio.h> #include <mmio.h>
#include <platform.h> #include <platform.h>
#include <platform_def.h> #include <platform_def.h>
#include <sunxi_def.h> #include <sunxi_def.h>
#include <sunxi_mmap.h>
#include <sunxi_private.h>
#include <xlat_tables_v2.h> #include <xlat_tables_v2.h>
#include "sunxi_private.h"
static mmap_region_t sunxi_mmap[PLATFORM_MMAP_REGIONS + 1] = { static mmap_region_t sunxi_mmap[PLATFORM_MMAP_REGIONS + 1] = {
MAP_REGION_FLAT(SUNXI_SRAM_BASE, SUNXI_SRAM_SIZE, MAP_REGION_FLAT(SUNXI_SRAM_BASE, SUNXI_SRAM_SIZE,
MT_MEMORY | MT_RW | MT_SECURE), MT_MEMORY | MT_RW | MT_SECURE),
MAP_REGION_FLAT(SUNXI_DEV_BASE, SUNXI_DEV_SIZE, MAP_REGION_FLAT(SUNXI_DEV_BASE, SUNXI_DEV_SIZE,
MT_DEVICE | MT_RW | MT_SECURE), MT_DEVICE | MT_RW | MT_SECURE),
MAP_REGION_FLAT(SUNXI_DRAM_BASE, SUNXI_DRAM_SIZE, MAP_REGION(SUNXI_DRAM_BASE, SUNXI_DRAM_VIRT_BASE, SUNXI_DRAM_SEC_SIZE,
MT_MEMORY | MT_RW | MT_NS), MT_MEMORY | MT_RW | MT_SECURE),
MAP_REGION(PLAT_SUNXI_NS_IMAGE_OFFSET,
SUNXI_DRAM_VIRT_BASE + SUNXI_DRAM_SEC_SIZE,
SUNXI_DRAM_MAP_SIZE,
MT_MEMORY | MT_RO | MT_NS),
{}, {},
}; };
...@@ -47,9 +54,6 @@ void sunxi_configure_mmu_el3(int flags) ...@@ -47,9 +54,6 @@ void sunxi_configure_mmu_el3(int flags)
mmap_add_region(BL_RO_DATA_BASE, BL_RO_DATA_BASE, mmap_add_region(BL_RO_DATA_BASE, BL_RO_DATA_BASE,
BL_RO_DATA_END - BL_RO_DATA_BASE, BL_RO_DATA_END - BL_RO_DATA_BASE,
MT_RO_DATA | MT_SECURE); MT_RO_DATA | MT_SECURE);
mmap_add_region(BL_COHERENT_RAM_BASE, BL_COHERENT_RAM_BASE,
BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE,
MT_DEVICE | MT_RW | MT_SECURE);
mmap_add(sunxi_mmap); mmap_add(sunxi_mmap);
init_xlat_tables(); init_xlat_tables();
...@@ -71,3 +75,136 @@ uint16_t sunxi_read_soc_id(void) ...@@ -71,3 +75,136 @@ uint16_t sunxi_read_soc_id(void)
return reg >> 16; return reg >> 16;
} }
/*
* Configure a given pin to the GPIO-OUT function and sets its level.
* The port is given as a capital letter, the pin is the number within
* this port group.
* So to set pin PC7 to high, use: sunxi_set_gpio_out('C', 7, true);
*/
void sunxi_set_gpio_out(char port, int pin, bool level_high)
{
uintptr_t port_base;
if (port < 'A' || port > 'L')
return;
if (port == 'L')
port_base = SUNXI_R_PIO_BASE;
else
port_base = SUNXI_PIO_BASE + (port - 'A') * 0x24;
/* Set the new level first before configuring the pin. */
if (level_high)
mmio_setbits_32(port_base + 0x10, BIT(pin));
else
mmio_clrbits_32(port_base + 0x10, BIT(pin));
/* configure pin as GPIO out (4(3) bits per pin, 1: GPIO out */
mmio_clrsetbits_32(port_base + (pin / 8) * 4,
0x7 << ((pin % 8) * 4),
0x1 << ((pin % 8) * 4));
}
int sunxi_init_platform_r_twi(uint16_t socid, bool use_rsb)
{
uint32_t pin_func = 0x77;
uint32_t device_bit;
unsigned int reset_offset = 0xb0;
switch (socid) {
case SUNXI_SOC_H5:
if (use_rsb)
return -ENODEV;
pin_func = 0x22;
device_bit = BIT(6);
break;
case SUNXI_SOC_H6:
if (use_rsb)
return -ENODEV;
pin_func = 0x33;
device_bit = BIT(16);
reset_offset = 0x19c;
break;
case SUNXI_SOC_A64:
pin_func = use_rsb ? 0x22 : 0x33;
device_bit = use_rsb ? BIT(3) : BIT(6);
break;
default:
INFO("R_I2C/RSB on Allwinner 0x%x SoC not supported\n", socid);
return -ENODEV;
}
/* un-gate R_PIO clock */
if (socid != SUNXI_SOC_H6)
mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x28, BIT(0));
/* switch pins PL0 and PL1 to the desired function */
mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x00, 0xffU, pin_func);
/* level 2 drive strength */
mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x14, 0x0fU, 0xaU);
/* set both pins to pull-up */
mmio_clrsetbits_32(SUNXI_R_PIO_BASE + 0x1c, 0x0fU, 0x5U);
/* assert, then de-assert reset of I2C/RSB controller */
mmio_clrbits_32(SUNXI_R_PRCM_BASE + reset_offset, device_bit);
mmio_setbits_32(SUNXI_R_PRCM_BASE + reset_offset, device_bit);
/* un-gate clock */
if (socid != SUNXI_SOC_H6)
mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x28, device_bit);
else
mmio_setbits_32(SUNXI_R_PRCM_BASE + 0x19c, device_bit | BIT(0));
return 0;
}
/* This lock synchronises access to the arisc management processor. */
DEFINE_BAKERY_LOCK(arisc_lock);
/*
* Tell the "arisc" SCP core (an OpenRISC core) to execute some code.
* We don't have any service running there, so we place some OpenRISC code
* in SRAM, put the address of that into the reset vector and release the
* arisc reset line. The SCP will execute that code and pull the line up again.
*/
void sunxi_execute_arisc_code(uint32_t *code, size_t size,
int patch_offset, uint16_t param)
{
uintptr_t arisc_reset_vec = SUNXI_SRAM_A2_BASE - 0x4000 + 0x100;
do {
bakery_lock_get(&arisc_lock);
/* Wait until the arisc is in reset state. */
if (!(mmio_read_32(SUNXI_R_CPUCFG_BASE) & BIT(0)))
break;
bakery_lock_release(&arisc_lock);
} while (1);
/* Patch up the code to feed in an input parameter. */
if (patch_offset >= 0 && patch_offset <= (size - 4))
code[patch_offset] = (code[patch_offset] & ~0xffff) | param;
clean_dcache_range((uintptr_t)code, size);
/*
* The OpenRISC unconditional branch has opcode 0, the branch offset
* is in the lower 26 bits, containing the distance to the target,
* in instruction granularity (32 bits).
*/
mmio_write_32(arisc_reset_vec, ((uintptr_t)code - arisc_reset_vec) / 4);
clean_dcache_range(arisc_reset_vec, 4);
/* De-assert the arisc reset line to let it run. */
mmio_setbits_32(SUNXI_R_CPUCFG_BASE, BIT(0));
/*
* We release the lock here, although the arisc is still busy.
* But as long as it runs, the reset line is high, so other users
* won't leave the loop above.
* Once it has finished, the code is supposed to clear the reset line,
* to signal this to other users.
*/
bakery_lock_release(&arisc_lock);
}
...@@ -4,15 +4,19 @@ ...@@ -4,15 +4,19 @@
* SPDX-License-Identifier: BSD-3-Clause * SPDX-License-Identifier: BSD-3-Clause
*/ */
#include <arch_helpers.h>
#include <assert.h>
#include <core_off_arisc.h>
#include <debug.h> #include <debug.h>
#include <delay_timer.h>
#include <mmio.h> #include <mmio.h>
#include <platform.h>
#include <platform_def.h> #include <platform_def.h>
#include <sunxi_mmap.h>
#include <sunxi_cpucfg.h> #include <sunxi_cpucfg.h>
#include <sunxi_mmap.h>
#include <sunxi_private.h>
#include <utils_def.h> #include <utils_def.h>
#include "sunxi_private.h"
static void sunxi_cpu_disable_power(unsigned int cluster, unsigned int core) static void sunxi_cpu_disable_power(unsigned int cluster, unsigned int core)
{ {
if (mmio_read_32(SUNXI_CPU_POWER_CLAMP_REG(cluster, core)) == 0xff) if (mmio_read_32(SUNXI_CPU_POWER_CLAMP_REG(cluster, core)) == 0xff)
...@@ -40,16 +44,37 @@ static void sunxi_cpu_enable_power(unsigned int cluster, unsigned int core) ...@@ -40,16 +44,37 @@ static void sunxi_cpu_enable_power(unsigned int cluster, unsigned int core)
void sunxi_cpu_off(unsigned int cluster, unsigned int core) void sunxi_cpu_off(unsigned int cluster, unsigned int core)
{ {
int corenr = cluster * PLATFORM_MAX_CPUS_PER_CLUSTER + core;
VERBOSE("PSCI: Powering off cluster %d core %d\n", cluster, core); VERBOSE("PSCI: Powering off cluster %d core %d\n", cluster, core);
/* Deassert DBGPWRDUP */ /* Deassert DBGPWRDUP */
mmio_clrbits_32(SUNXI_CPUCFG_DBG_REG0, BIT(core)); mmio_clrbits_32(SUNXI_CPUCFG_DBG_REG0, BIT(core));
/* Activate the core output clamps */
mmio_setbits_32(SUNXI_POWEROFF_GATING_REG(cluster), BIT(core)); /* We can't turn ourself off like this, but it works for other cores. */
/* Assert CPU power-on reset */ if (plat_my_core_pos() != corenr) {
mmio_clrbits_32(SUNXI_POWERON_RST_REG(cluster), BIT(core)); /* Activate the core output clamps, but not for core 0. */
/* Remove power from the CPU */ if (corenr != 0)
sunxi_cpu_disable_power(cluster, core); mmio_setbits_32(SUNXI_POWEROFF_GATING_REG(cluster),
BIT(core));
/* Assert CPU power-on reset */
mmio_clrbits_32(SUNXI_POWERON_RST_REG(cluster), BIT(core));
/* Remove power from the CPU */
sunxi_cpu_disable_power(cluster, core);
return;
}
/* Simplifies assembly, all SoCs so far are single cluster anyway. */
assert(cluster == 0);
/*
* If we are supposed to turn ourself off, tell the arisc SCP
* to do that work for us. The code expects the core mask to be
* patched into the first instruction.
*/
sunxi_execute_arisc_code(arisc_core_off, sizeof(arisc_core_off),
0, BIT_32(core));
} }
void sunxi_cpu_on(unsigned int cluster, unsigned int core) void sunxi_cpu_on(unsigned int cluster, unsigned int core)
......
...@@ -13,15 +13,14 @@ ...@@ -13,15 +13,14 @@
#include <platform.h> #include <platform.h>
#include <platform_def.h> #include <platform_def.h>
#include <psci.h> #include <psci.h>
#include <sunxi_mmap.h>
#include <sunxi_cpucfg.h> #include <sunxi_cpucfg.h>
#include <sunxi_mmap.h>
#include <sunxi_private.h>
#define SUNXI_WDOG0_CTRL_REG (SUNXI_WDOG_BASE + 0x0010) #define SUNXI_WDOG0_CTRL_REG (SUNXI_WDOG_BASE + 0x0010)
#define SUNXI_WDOG0_CFG_REG (SUNXI_WDOG_BASE + 0x0014) #define SUNXI_WDOG0_CFG_REG (SUNXI_WDOG_BASE + 0x0014)
#define SUNXI_WDOG0_MODE_REG (SUNXI_WDOG_BASE + 0x0018) #define SUNXI_WDOG0_MODE_REG (SUNXI_WDOG_BASE + 0x0018)
#include "sunxi_private.h"
#define mpidr_is_valid(mpidr) ( \ #define mpidr_is_valid(mpidr) ( \
MPIDR_AFFLVL3_VAL(mpidr) == 0 && \ MPIDR_AFFLVL3_VAL(mpidr) == 0 && \
MPIDR_AFFLVL2_VAL(mpidr) == 0 && \ MPIDR_AFFLVL2_VAL(mpidr) == 0 && \
...@@ -43,6 +42,16 @@ static void sunxi_pwr_domain_off(const psci_power_state_t *target_state) ...@@ -43,6 +42,16 @@ static void sunxi_pwr_domain_off(const psci_power_state_t *target_state)
gicv2_cpuif_disable(); gicv2_cpuif_disable();
} }
static void __dead2 sunxi_pwr_down_wfi(const psci_power_state_t *target_state)
{
u_register_t mpidr = read_mpidr();
sunxi_cpu_off(MPIDR_AFFLVL1_VAL(mpidr), MPIDR_AFFLVL0_VAL(mpidr));
while (1)
wfi();
}
static void sunxi_pwr_domain_on_finish(const psci_power_state_t *target_state) static void sunxi_pwr_domain_on_finish(const psci_power_state_t *target_state)
{ {
gicv2_pcpu_distif_init(); gicv2_pcpu_distif_init();
...@@ -83,6 +92,7 @@ static int sunxi_validate_ns_entrypoint(uintptr_t ns_entrypoint) ...@@ -83,6 +92,7 @@ static int sunxi_validate_ns_entrypoint(uintptr_t ns_entrypoint)
static plat_psci_ops_t sunxi_psci_ops = { static plat_psci_ops_t sunxi_psci_ops = {
.pwr_domain_on = sunxi_pwr_domain_on, .pwr_domain_on = sunxi_pwr_domain_on,
.pwr_domain_off = sunxi_pwr_domain_off, .pwr_domain_off = sunxi_pwr_domain_off,
.pwr_domain_pwr_down_wfi = sunxi_pwr_down_wfi,
.pwr_domain_on_finish = sunxi_pwr_domain_on_finish, .pwr_domain_on_finish = sunxi_pwr_domain_on_finish,
.system_off = sunxi_system_off, .system_off = sunxi_system_off,
.system_reset = sunxi_system_reset, .system_reset = sunxi_system_reset,
......
...@@ -7,6 +7,7 @@ ...@@ -7,6 +7,7 @@
#include <debug.h> #include <debug.h>
#include <mmio.h> #include <mmio.h>
#include <sunxi_mmap.h> #include <sunxi_mmap.h>
#include <sunxi_private.h>
#ifdef SUNXI_SPC_BASE #ifdef SUNXI_SPC_BASE
#define SPC_DECPORT_STA_REG(p) (SUNXI_SPC_BASE + ((p) * 0x0c) + 0x4) #define SPC_DECPORT_STA_REG(p) (SUNXI_SPC_BASE + ((p) * 0x0c) + 0x4)
......
/*
* Copyright (c) 2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
static uint32_t arisc_core_off[] = {
0x18600000, /* l.movhi r3, <corenr> */
0x18000000, /* l.movhi r0, 0x0 */
0x19a00170, /* l.movhi r13, 0x170 */
0x84ad0030, /* l.lwz r5, 0x30(r13) */
0xe0a51803, /* l.and r5, r5, r3 */
0xe4050000, /* l.sfeq r5, r0 */
0x13fffffd, /* l.bf -12 */
0xb8c30050, /* l.srli r6, r3, 16 */
0xbc060001, /* l.sfeqi r6, 1 */
0x10000005, /* l.bf +20 */
0x19a001f0, /* l.movhi r13, 0x1f0 */
0x84ad1500, /* l.lwz r5, 0x1500(r13) */
0xe0a53004, /* l.or r5, r5, r6 */
0xd44d2d00, /* l.sw 0x1500(r13), r5 */
0x84ad1c30, /* l.lwz r5, 0x1c30(r13) */
0xacc6ffff, /* l.xori r6, r6, -1 */
0xe0a53003, /* l.and r5, r5, r6 */
0xd46d2c30, /* l.sw 0x1c30(r13), r5 */
0xe0c3000f, /* l.ff1 r6, r3 */
0x9cc6ffef, /* l.addi r6, r6, -17 */
0xb8c60002, /* l.slli r6, r6, 2 */
0xe0c66800, /* l.add r6, r6, r13 */
0xa8a000ff, /* l.ori r5, r0, 0xff */
0xd4462d40, /* l.sw 0x1540(r6), r5 */
0xd46d0400, /* l.sw 0x1c00(r13), r0 */
0x03ffffff, /* l.j -1 */
0x15000000, /* l.nop */
};
...@@ -21,7 +21,7 @@ ...@@ -21,7 +21,7 @@
#define SUNXI_DEV_BASE 0x01000000 #define SUNXI_DEV_BASE 0x01000000
#define SUNXI_DEV_SIZE 0x01000000 #define SUNXI_DEV_SIZE 0x01000000
#define SUNXI_DRAM_BASE 0x40000000 #define SUNXI_DRAM_BASE 0x40000000
#define SUNXI_DRAM_SIZE 0x80000000 #define SUNXI_DRAM_VIRT_BASE 0x02000000
/* Memory-mapped devices */ /* Memory-mapped devices */
#define SUNXI_CPU_MBIST_BASE 0x01502000 #define SUNXI_CPU_MBIST_BASE 0x01502000
......
...@@ -4,51 +4,7 @@ ...@@ -4,51 +4,7 @@
# SPDX-License-Identifier: BSD-3-Clause # SPDX-License-Identifier: BSD-3-Clause
# #
include lib/xlat_tables_v2/xlat_tables.mk # The differences between the platform are covered by the include files.
include plat/allwinner/common/allwinner-common.mk
AW_PLAT := plat/allwinner PLAT_BL_COMMON_SOURCES += drivers/allwinner/sunxi_rsb.c
PLAT_INCLUDES := -Iinclude/plat/arm/common/ \
-Iinclude/plat/arm/common/aarch64 \
-I${AW_PLAT}/common/include \
-I${AW_PLAT}/${PLAT}/include
PLAT_BL_COMMON_SOURCES := drivers/console/${ARCH}/console.S \
drivers/ti/uart/${ARCH}/16550_console.S \
${XLAT_TABLES_LIB_SRCS} \
${AW_PLAT}/common/plat_helpers.S \
${AW_PLAT}/common/sunxi_common.c
BL31_SOURCES += drivers/arm/gic/common/gic_common.c \
drivers/arm/gic/v2/gicv2_helpers.c \
drivers/arm/gic/v2/gicv2_main.c \
drivers/delay_timer/delay_timer.c \
drivers/delay_timer/generic_delay_timer.c \
lib/cpus/${ARCH}/cortex_a53.S \
plat/common/plat_gicv2.c \
plat/common/plat_psci_common.c \
${AW_PLAT}/common/sunxi_bl31_setup.c \
${AW_PLAT}/common/sunxi_cpu_ops.c \
${AW_PLAT}/common/sunxi_pm.c \
${AW_PLAT}/sun50i_a64/sunxi_power.c \
${AW_PLAT}/common/sunxi_security.c \
${AW_PLAT}/common/sunxi_topology.c
# The bootloader is guaranteed to only run on CPU 0 by the boot ROM.
COLD_BOOT_SINGLE_CPU := 1
# Enable workarounds for Cortex-A53 errata. Allwinner uses at least r0p4.
ERRATA_A53_835769 := 1
ERRATA_A53_843419 := 1
ERRATA_A53_855873 := 1
MULTI_CONSOLE_API := 1
# The reset vector can be changed for each CPU.
PROGRAMMABLE_RESET_ADDRESS := 1
# Allow mapping read-only data as execute-never.
SEPARATE_CODE_AND_RODATA := 1
# BL31 gets loaded alongside BL33 (U-Boot) by U-Boot's SPL
RESET_TO_BL31 := 1
...@@ -5,20 +5,350 @@ ...@@ -5,20 +5,350 @@
* SPDX-License-Identifier: BSD-3-Clause * SPDX-License-Identifier: BSD-3-Clause
*/ */
#include <allwinner/sunxi_rsb.h>
#include <arch_helpers.h> #include <arch_helpers.h>
#include <debug.h> #include <debug.h>
#include <delay_timer.h>
#include <errno.h>
#include <libfdt.h>
#include <mmio.h>
#include <platform_def.h>
#include <sunxi_def.h>
#include <sunxi_mmap.h>
#include <sunxi_private.h>
int sunxi_pmic_setup(void) static enum pmic_type {
GENERIC_H5,
GENERIC_A64,
REF_DESIGN_H5, /* regulators controlled by GPIO pins on port L */
AXP803_RSB, /* PMIC connected via RSB on most A64 boards */
} pmic;
#define AXP803_HW_ADDR 0x3a3
#define AXP803_RT_ADDR 0x2d
/*
* On boards without a proper PMIC we struggle to turn off the system properly.
* Try to turn off as much off the system as we can, to reduce power
* consumption. This should be entered with only one core running and SMP
* disabled.
* This function only cares about peripherals.
*/
void sunxi_turn_off_soc(uint16_t socid)
{
int i;
/** Turn off most peripherals, most importantly DRAM users. **/
/* Keep DRAM controller running for now. */
mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c0, ~BIT_32(14));
mmio_clrbits_32(SUNXI_CCU_BASE + 0x60, ~BIT_32(14));
/* Contains msgbox (bit 21) and spinlock (bit 22) */
mmio_write_32(SUNXI_CCU_BASE + 0x2c4, 0);
mmio_write_32(SUNXI_CCU_BASE + 0x64, 0);
mmio_write_32(SUNXI_CCU_BASE + 0x2c8, 0);
/* Keep PIO controller running for now. */
mmio_clrbits_32(SUNXI_CCU_BASE + 0x68, ~(BIT_32(5)));
mmio_write_32(SUNXI_CCU_BASE + 0x2d0, 0);
/* Contains UART0 (bit 16) */
mmio_write_32(SUNXI_CCU_BASE + 0x2d8, 0);
mmio_write_32(SUNXI_CCU_BASE + 0x6c, 0);
mmio_write_32(SUNXI_CCU_BASE + 0x70, 0);
/** Turn off DRAM controller. **/
mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c0, BIT_32(14));
mmio_clrbits_32(SUNXI_CCU_BASE + 0x60, BIT_32(14));
/** Migrate CPU and bus clocks away from the PLLs. **/
/* AHB1: use OSC24M/1, APB1 = AHB1 / 2 */
mmio_write_32(SUNXI_CCU_BASE + 0x54, 0x1000);
/* APB2: use OSC24M */
mmio_write_32(SUNXI_CCU_BASE + 0x58, 0x1000000);
/* AHB2: use AHB1 clock */
mmio_write_32(SUNXI_CCU_BASE + 0x5c, 0);
/* CPU: use OSC24M */
mmio_write_32(SUNXI_CCU_BASE + 0x50, 0x10000);
/** Turn off PLLs. **/
for (i = 0; i < 6; i++)
mmio_clrbits_32(SUNXI_CCU_BASE + i * 8, BIT(31));
switch (socid) {
case SUNXI_SOC_H5:
mmio_clrbits_32(SUNXI_CCU_BASE + 0x44, BIT(31));
break;
case SUNXI_SOC_A64:
mmio_clrbits_32(SUNXI_CCU_BASE + 0x2c, BIT(31));
mmio_clrbits_32(SUNXI_CCU_BASE + 0x4c, BIT(31));
break;
}
}
static int rsb_init(void)
{
int ret;
ret = rsb_init_controller();
if (ret)
return ret;
/* Start with 400 KHz to issue the I2C->RSB switch command. */
ret = rsb_set_bus_speed(SUNXI_OSC24M_CLK_IN_HZ, 400000);
if (ret)
return ret;
/*
* Initiate an I2C transaction to write 0x7c into register 0x3e,
* switching the PMIC to RSB mode.
*/
ret = rsb_set_device_mode(0x7c3e00);
if (ret)
return ret;
/* Now in RSB mode, switch to the recommended 3 MHz. */
ret = rsb_set_bus_speed(SUNXI_OSC24M_CLK_IN_HZ, 3000000);
if (ret)
return ret;
/* Associate the 8-bit runtime address with the 12-bit bus address. */
return rsb_assign_runtime_address(AXP803_HW_ADDR,
AXP803_RT_ADDR);
}
static int axp_write(uint8_t reg, uint8_t val)
{
return rsb_write(AXP803_RT_ADDR, reg, val);
}
static int axp_setbits(uint8_t reg, uint8_t set_mask)
{
uint8_t regval;
int ret;
ret = rsb_read(AXP803_RT_ADDR, reg);
if (ret < 0)
return ret;
regval = ret | set_mask;
return rsb_write(AXP803_RT_ADDR, reg, regval);
}
static bool should_enable_regulator(const void *fdt, int node)
{ {
/* STUB */ if (fdt_getprop(fdt, node, "phandle", NULL) != NULL)
NOTICE("BL31: STUB PMIC setup code called\n"); return true;
if (fdt_getprop(fdt, node, "regulator-always-on", NULL) != NULL)
return true;
return false;
}
/*
* Retrieve the voltage from a given regulator DTB node.
* Both the regulator-{min,max}-microvolt properties must be present and
* have the same value. Return that value in millivolts.
*/
static int fdt_get_regulator_millivolt(const void *fdt, int node)
{
const fdt32_t *prop;
uint32_t min_volt;
prop = fdt_getprop(fdt, node, "regulator-min-microvolt", NULL);
if (prop == NULL)
return -EINVAL;
min_volt = fdt32_to_cpu(*prop);
prop = fdt_getprop(fdt, node, "regulator-max-microvolt", NULL);
if (prop == NULL)
return -EINVAL;
if (fdt32_to_cpu(*prop) != min_volt)
return -EINVAL;
return min_volt / 1000;
}
#define NO_SPLIT 0xff
struct axp_regulator {
char *dt_name;
uint16_t min_volt;
uint16_t max_volt;
uint16_t step;
unsigned char split;
unsigned char volt_reg;
unsigned char switch_reg;
unsigned char switch_bit;
} regulators[] = {
{"dcdc1", 1600, 3400, 100, NO_SPLIT, 0x20, 0xff, 9},
{"dcdc5", 800, 1840, 10, 32, 0x24, 0xff, 9},
{"dldo1", 700, 3300, 100, NO_SPLIT, 0x15, 0x12, 3},
{"dldo2", 700, 4200, 100, 27, 0x16, 0x12, 4},
{"dldo3", 700, 3300, 100, NO_SPLIT, 0x17, 0x12, 5},
{"fldo1", 700, 1450, 50, NO_SPLIT, 0x1c, 0x13, 2},
{}
};
static int setup_regulator(const void *fdt, int node,
const struct axp_regulator *reg)
{
int mvolt;
uint8_t regval;
if (!should_enable_regulator(fdt, node))
return -ENOENT;
mvolt = fdt_get_regulator_millivolt(fdt, node);
if (mvolt < reg->min_volt || mvolt > reg->max_volt)
return -EINVAL;
regval = (mvolt / reg->step) - (reg->min_volt / reg->step);
if (regval > reg->split)
regval = ((regval - reg->split) / 2) + reg->split;
axp_write(reg->volt_reg, regval);
if (reg->switch_reg < 0xff)
axp_setbits(reg->switch_reg, BIT(reg->switch_bit));
INFO("PMIC: AXP803: %s voltage: %d.%03dV\n", reg->dt_name,
mvolt / 1000, mvolt % 1000);
return 0; return 0;
} }
static void setup_axp803_rails(const void *fdt)
{
int node;
bool dc1sw = false;
/* locate the PMIC DT node, bail out if not found */
node = fdt_node_offset_by_compatible(fdt, -1, "x-powers,axp803");
if (node == -FDT_ERR_NOTFOUND) {
WARN("BL31: PMIC: No AXP803 DT node, skipping initial setup.\n");
return;
}
if (fdt_getprop(fdt, node, "x-powers,drive-vbus-en", NULL))
axp_setbits(0x8f, BIT(4));
/* descend into the "regulators" subnode */
node = fdt_first_subnode(fdt, node);
/* iterate over all regulators to find used ones */
for (node = fdt_first_subnode(fdt, node);
node != -FDT_ERR_NOTFOUND;
node = fdt_next_subnode(fdt, node)) {
struct axp_regulator *reg;
const char *name;
int length;
/* We only care if it's always on or referenced. */
if (!should_enable_regulator(fdt, node))
continue;
name = fdt_get_name(fdt, node, &length);
for (reg = regulators; reg->dt_name; reg++) {
if (!strncmp(name, reg->dt_name, length)) {
setup_regulator(fdt, node, reg);
break;
}
}
if (!strncmp(name, "dc1sw", length)) {
/* Delay DC1SW enablement to avoid overheating. */
dc1sw = true;
continue;
}
}
/*
* If DLDO2 is enabled after DC1SW, the PMIC overheats and shuts
* down. So always enable DC1SW as the very last regulator.
*/
if (dc1sw) {
INFO("PMIC: AXP803: Enabling DC1SW\n");
axp_setbits(0x12, BIT(7));
}
}
int sunxi_pmic_setup(uint16_t socid, const void *fdt)
{
int ret;
switch (socid) {
case SUNXI_SOC_H5:
pmic = REF_DESIGN_H5;
NOTICE("BL31: PMIC: Defaulting to PortL GPIO according to H5 reference design.\n");
break;
case SUNXI_SOC_A64:
pmic = GENERIC_A64;
ret = sunxi_init_platform_r_twi(socid, true);
if (ret)
return ret;
ret = rsb_init();
if (ret)
return ret;
pmic = AXP803_RSB;
NOTICE("BL31: PMIC: Detected AXP803 on RSB.\n");
if (fdt)
setup_axp803_rails(fdt);
break;
default:
NOTICE("BL31: PMIC: No support for Allwinner %x SoC.\n", socid);
return -ENODEV;
}
return 0;
}
void __dead2 sunxi_power_down(void) void __dead2 sunxi_power_down(void)
{ {
ERROR("PSCI: Full shutdown not implemented, halting\n"); switch (pmic) {
case GENERIC_H5:
/* Turn off as many peripherals and clocks as we can. */
sunxi_turn_off_soc(SUNXI_SOC_H5);
/* Turn off the pin controller now. */
mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
break;
case GENERIC_A64:
/* Turn off as many peripherals and clocks as we can. */
sunxi_turn_off_soc(SUNXI_SOC_A64);
/* Turn off the pin controller now. */
mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
break;
case REF_DESIGN_H5:
sunxi_turn_off_soc(SUNXI_SOC_H5);
/*
* Switch PL pins to power off the board:
* - PL5 (VCC_IO) -> high
* - PL8 (PWR-STB = CPU power supply) -> low
* - PL9 (PWR-DRAM) ->low
* - PL10 (power LED) -> low
* Note: Clearing PL8 will reset the board, so keep it up.
*/
sunxi_set_gpio_out('L', 5, 1);
sunxi_set_gpio_out('L', 9, 0);
sunxi_set_gpio_out('L', 10, 0);
/* Turn off pin controller now. */
mmio_write_32(SUNXI_CCU_BASE + 0x68, 0);
break;
case AXP803_RSB:
/* (Re-)init RSB in case the rich OS has disabled it. */
sunxi_init_platform_r_twi(SUNXI_SOC_A64, true);
rsb_init();
/* Set "power disable control" bit */
axp_setbits(0x32, BIT(7));
break;
default:
break;
}
udelay(1000);
ERROR("PSCI: Cannot turn off system, halting.\n");
wfi(); wfi();
panic(); panic();
} }
/*
* Copyright (c) 2018, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
static uint32_t arisc_core_off[] = {
0x18600000, /* l.movhi r3, <corenr> */
0x18000000, /* l.movhi r0, 0x0 */
0x19a00901, /* l.movhi r13, 0x901 */
0x84ad0080, /* l.lwz r5, 0x80(r13) */
0xe0a51803, /* l.and r5, r5, r3 */
0xe4050000, /* l.sfeq r5, r0 */
0x13fffffd, /* l.bf -12 */
0xb8c30050, /* l.srli r6, r3, 16 */
0xbc060001, /* l.sfeqi r6, 1 */
0x10000005, /* l.bf +20 */
0x19a00700, /* l.movhi r13, 0x700 */
0x84ad0444, /* l.lwz r5, 0x0444(r13) */
0xe0a53004, /* l.or r5, r5, r6 */
0xd40d2c44, /* l.sw 0x0444(r13), r5 */
0x84ad0440, /* l.lwz r5, 0x0440(r13) */
0xacc6ffff, /* l.xori r6, r6, -1 */
0xe0a53003, /* l.and r5, r5, r6 */
0xd40d2c40, /* l.sw 0x0440(r13), r5 */
0xe0c3000f, /* l.ff1 r6, r3 */
0x9cc6ffef, /* l.addi r6, r6, -17 */
0xb8c60002, /* l.slli r6, r6, 2 */
0xe0c66800, /* l.add r6, r6, r13 */
0xa8a000ff, /* l.ori r5, r0, 0xff */
0xd4062c50, /* l.sw 0x0450(r6), r5 */
0xd40d0400, /* l.sw 0x0400(r13), r0 */
0x03ffffff, /* l.j -1 */
0x15000000, /* l.nop */
};
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
#define SUNXI_ROM_BASE 0x00000000 #define SUNXI_ROM_BASE 0x00000000
#define SUNXI_ROM_SIZE 0x00010000 #define SUNXI_ROM_SIZE 0x00010000
#define SUNXI_SRAM_BASE 0x00020000 #define SUNXI_SRAM_BASE 0x00020000
#define SUNXI_SRAM_SIZE 0x00098000 #define SUNXI_SRAM_SIZE 0x000f8000
#define SUNXI_SRAM_A1_BASE 0x00020000 #define SUNXI_SRAM_A1_BASE 0x00020000
#define SUNXI_SRAM_A1_SIZE 0x00008000 #define SUNXI_SRAM_A1_SIZE 0x00008000
#define SUNXI_SRAM_A2_BASE 0x00104000 #define SUNXI_SRAM_A2_BASE 0x00104000
...@@ -21,7 +21,7 @@ ...@@ -21,7 +21,7 @@
#define SUNXI_DEV_BASE 0x01000000 #define SUNXI_DEV_BASE 0x01000000
#define SUNXI_DEV_SIZE 0x09000000 #define SUNXI_DEV_SIZE 0x09000000
#define SUNXI_DRAM_BASE 0x40000000 #define SUNXI_DRAM_BASE 0x40000000
#define SUNXI_DRAM_SIZE 0xc0000000 #define SUNXI_DRAM_VIRT_BASE 0x0a000000
/* Memory-mapped devices */ /* Memory-mapped devices */
#define SUNXI_SYSCON_BASE 0x03000000 #define SUNXI_SYSCON_BASE 0x03000000
......
...@@ -4,53 +4,7 @@ ...@@ -4,53 +4,7 @@
# SPDX-License-Identifier: BSD-3-Clause # SPDX-License-Identifier: BSD-3-Clause
# #
include lib/xlat_tables_v2/xlat_tables.mk # The differences between the platform are covered by the include files.
include plat/allwinner/common/allwinner-common.mk
AW_PLAT := plat/allwinner PLAT_BL_COMMON_SOURCES += drivers/mentor/i2c/mi2cv.c
AW_DRIVERS := drivers/allwinner
PLAT_INCLUDES := -Iinclude/plat/arm/common \
-Iinclude/plat/arm/common/aarch64 \
-I${AW_PLAT}/common/include \
-I${AW_PLAT}/${PLAT}/include
PLAT_BL_COMMON_SOURCES := drivers/console/${ARCH}/console.S \
drivers/mentor/i2c/mi2cv.c \
drivers/ti/uart/${ARCH}/16550_console.S \
${XLAT_TABLES_LIB_SRCS} \
${AW_PLAT}/common/plat_helpers.S \
${AW_PLAT}/common/sunxi_common.c
BL31_SOURCES += drivers/arm/gic/common/gic_common.c \
drivers/arm/gic/v2/gicv2_helpers.c \
drivers/arm/gic/v2/gicv2_main.c \
drivers/delay_timer/delay_timer.c \
drivers/delay_timer/generic_delay_timer.c \
lib/cpus/${ARCH}/cortex_a53.S \
plat/common/plat_gicv2.c \
plat/common/plat_psci_common.c \
${AW_PLAT}/common/sunxi_bl31_setup.c \
${AW_PLAT}/common/sunxi_cpu_ops.c \
${AW_PLAT}/common/sunxi_pm.c \
${AW_PLAT}/sun50i_h6/sunxi_power.c \
${AW_PLAT}/common/sunxi_security.c \
${AW_PLAT}/common/sunxi_topology.c
# The bootloader is guaranteed to only run on CPU 0 by the boot ROM.
COLD_BOOT_SINGLE_CPU := 1
# Enable workarounds for Cortex-A53 errata. Allwinner uses at least r0p4.
ERRATA_A53_835769 := 1
ERRATA_A53_843419 := 1
ERRATA_A53_855873 := 1
MULTI_CONSOLE_API := 1
# The reset vector can be changed for each CPU.
PROGRAMMABLE_RESET_ADDRESS := 1
# Allow mapping read-only data as execute-never.
SEPARATE_CODE_AND_RODATA := 1
# BL31 gets loaded alongside BL33 (U-Boot) by U-Boot's SPL
RESET_TO_BL31 := 1
...@@ -12,7 +12,9 @@ ...@@ -12,7 +12,9 @@
#include <mmio.h> #include <mmio.h>
#include <mentor/mi2cv.h> #include <mentor/mi2cv.h>
#include <string.h> #include <string.h>
#include <sunxi_def.h>
#include <sunxi_mmap.h> #include <sunxi_mmap.h>
#include <sunxi_private.h>
#define AXP805_ADDR 0x36 #define AXP805_ADDR 0x36
#define AXP805_ID 0x03 #define AXP805_ID 0x03
...@@ -24,36 +26,6 @@ enum pmic_type { ...@@ -24,36 +26,6 @@ enum pmic_type {
enum pmic_type pmic; enum pmic_type pmic;
static int sunxi_init_r_i2c(void)
{
uint32_t reg;
/* switch pins PL0 and PL1 to I2C */
reg = mmio_read_32(SUNXI_R_PIO_BASE + 0x00);
mmio_write_32(SUNXI_R_PIO_BASE + 0x00, (reg & ~0xff) | 0x33);
/* level 2 drive strength */
reg = mmio_read_32(SUNXI_R_PIO_BASE + 0x14);
mmio_write_32(SUNXI_R_PIO_BASE + 0x14, (reg & ~0x0f) | 0xa);
/* set both ports to pull-up */
reg = mmio_read_32(SUNXI_R_PIO_BASE + 0x1c);
mmio_write_32(SUNXI_R_PIO_BASE + 0x1c, (reg & ~0x0f) | 0x5);
/* assert & de-assert reset of R_I2C */
reg = mmio_read_32(SUNXI_R_PRCM_BASE + 0x19c);
mmio_write_32(SUNXI_R_PRCM_BASE + 0x19c, reg & ~BIT(16));
mmio_write_32(SUNXI_R_PRCM_BASE + 0x19c, reg | BIT(16));
/* un-gate R_I2C clock */
mmio_write_32(SUNXI_R_PRCM_BASE + 0x19c, reg | BIT(16) | BIT(0));
/* call mi2cv driver */
i2c_init((void *)SUNXI_R_I2C_BASE);
return 0;
}
int axp_i2c_read(uint8_t chip, uint8_t reg, uint8_t *val) int axp_i2c_read(uint8_t chip, uint8_t reg, uint8_t *val)
{ {
int ret; int ret;
...@@ -96,11 +68,13 @@ static int axp805_probe(void) ...@@ -96,11 +68,13 @@ static int axp805_probe(void)
return 0; return 0;
} }
int sunxi_pmic_setup(void) int sunxi_pmic_setup(uint16_t socid, const void *fdt)
{ {
int ret; int ret;
sunxi_init_r_i2c(); sunxi_init_platform_r_twi(SUNXI_SOC_H6, false);
/* initialise mi2cv driver */
i2c_init((void *)SUNXI_R_I2C_BASE);
NOTICE("PMIC: Probing AXP805\n"); NOTICE("PMIC: Probing AXP805\n");
pmic = AXP805; pmic = AXP805;
...@@ -120,7 +94,10 @@ void __dead2 sunxi_power_down(void) ...@@ -120,7 +94,10 @@ void __dead2 sunxi_power_down(void)
switch (pmic) { switch (pmic) {
case AXP805: case AXP805:
sunxi_init_r_i2c(); /* Re-initialise after rich OS might have used it. */
sunxi_init_platform_r_twi(SUNXI_SOC_H6, false);
/* initialise mi2cv driver */
i2c_init((void *)SUNXI_R_I2C_BASE);
axp_i2c_read(AXP805_ADDR, 0x32, &val); axp_i2c_read(AXP805_ADDR, 0x32, &val);
axp_i2c_write(AXP805_ADDR, 0x32, val | 0x80); axp_i2c_write(AXP805_ADDR, 0x32, val | 0x80);
break; break;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment