- 14 Aug, 2014 1 commit
-
-
Juan Castillo authored
This patch groups the current contents of the Trusted DRAM region at address 0x00_0600_0000 (entrypoint mailboxes and BL3-1 parameters) in a single shared memory area that may be allocated to Trusted SRAM (default) or Trusted DRAM at build time by setting the FVP_SHARED_DATA_LOCATION make variable. The size of this shared memory is 4096 bytes. The combination 'Shared data in Trusted SRAM + TSP in Trusted DRAM' is not currently supported due to restrictions in the maximum number of mmu tables that can be created. Documentation has been updated to reflect these changes. Fixes ARM-software/tf-issues#100 Change-Id: I26ff04d33ce4cacf8d770d1a1e24132b4fc53ff0
-
- 12 Aug, 2014 1 commit
-
-
Juan Castillo authored
Secure ROM at address 0x0000_0000 is defined as FVP_TRUSTED_ROM Secure RAM at address 0x0400_0000 is defined as FVP_TRUSTED_SRAM Secure RAM at address 0x0600_0000 is defined as FVP_TRUSTED_DRAM BLn_BASE and BLn_LIMIT definitions have been updated and are based on these new memory regions. The available memory for each bootloader in the linker script is defined by BLn_BASE and BLn_LIMIT, instead of the complete memory region. TZROM_BASE/SIZE and TZRAM_BASE/SIZE are no longer required as part of the platform porting. FVP common definitions are defined in fvp_def.h while platform_def.h contains exclusively (with a few exceptions) the definitions that are mandatory in the porting guide. Therefore, platform_def.h now includes fvp_def.h instead of the other way around. Porting guide has been updated to reflect these changes. Change-Id: I39a6088eb611fc4a347db0db4b8f1f0417dbab05
-
- 04 Aug, 2014 2 commits
- 01 Aug, 2014 4 commits
-
-
danh-arm authored
Vk/spd init by stack unwinding
-
Vikram Kanigiri authored
This patch adds support for BL3-2 initialization by asynchronous method where BL3-1 transfers control to BL3-2 using world switch. After BL3-2 initialization, it transfers control to BL3-3 via SPD service handler. The SPD service handler initializes the CPU context to BL3-3 entrypoint depending on the return function indentifier from TSP initialization. Fixes ARM-software/TF-issues#184 Change-Id: I7b135c2ceeb356d3bb5b6a287932e96ac67c7a34
-
Vikram Kanigiri authored
There is no mechanism which allows the TSPD to specify what SPSR to use when entering BL3-2 instead of BL3-3. This patch divides the responsibility between tspd_setup() and tspd_init() for initializing the TSPD and TSP to support the alternate BL3-2 initialization flow where BL3-1 handsover control to BL3-2 instead of BL3-3. SPSR generated by TSPD for TSP is preserved due the new division of labour which fixes #174. This patch also moves the cpu_context initialization code from tspd_setup() to tspd_init() immediately before entering the TSP. Instead tspd_setup() updates the BL3-2 entrypoint info structure with the state required for initializing the TSP later. Fixes ARM-software/TF-issues#174 Change-Id: Ida0a8a48d466c71d5b07b8c7f2af169b73f96940
-
Juan Castillo authored
The purpose of platform_is_primary_cpu() is to determine after reset (BL1 or BL3-1 with reset handler) if the current CPU must follow the cold boot path (primary CPU), or wait in a safe state (secondary CPU) until the primary CPU has finished the system initialization. This patch removes redundant calls to platform_is_primary_cpu() in subsequent bootloader entrypoints since the reset handler already guarantees that code is executed exclusively on the primary CPU. Additionally, this patch removes the weak definition of platform_is_primary_cpu(), so the implementation of this function becomes mandatory. Removing the weak symbol avoids other bootloaders accidentally picking up an invalid definition in case the porting layer makes the real function available only to BL1. The define PRIMARY_CPU is no longer mandatory in the platform porting because platform_is_primary_cpu() hides the implementation details (for instance, there may be platforms that report the primary CPU in a system register). The primary CPU definition in FVP has been moved to fvp_def.h. The porting guide has been updated accordingly. Fixes ARM-software/tf-issues#219 Change-Id: If675a1de8e8d25122b7fef147cb238d939f90b5e
-
- 31 Jul, 2014 1 commit
-
-
Soby Mathew authored
This patch further optimizes the EL3 register state stored in cpu_context. The 2 registers which are removed from cpu_context are: * cntfrq_el0 is the system timer register which is writable only in EL3 and it can be programmed during cold/warm boot. Hence it need not be saved to cpu_context. * cptr_el3 controls access to Trace, Floating-point, and Advanced SIMD functionality and it is programmed every time during cold and warm boot. The current BL3-1 implementation does not need to modify the access controls during normal execution and hence they are expected to remain static. Fixes ARM-software/tf-issues#197 Change-Id: I599ceee3b73a7dcfd37069fd41b60e3d397a7b18
-
- 28 Jul, 2014 13 commits
-
-
danh-arm authored
Rework incorrect use of assert() and panic() in codebase
-
danh-arm authored
Introduce asm assert and optimize crash reporting
-
danh-arm authored
Simplify management of SCTLR_EL3 and SCTLR_EL1
-
danh-arm authored
Ag/tf issues#198
-
Juan Castillo authored
Assert a valid security state using the macro sec_state_is_valid(). Replace assert() with panic() in those cases that might arise because of runtime errors and not programming errors. Replace panic() with assert() in those cases that might arise because of programming errors. Fixes ARM-software/tf-issues#96 Change-Id: I51e9ef0439fd5ff5e0edfef49050b69804bf14d5
-
Soby Mathew authored
This patch adds the CPUECTLR_EL1 register and the CCI Snoop Control register to the list of registers being reported when an unhandled exception occurs. Change-Id: I2d997f2d6ef3d7fa1fad5efe3364dc9058f9f22c
-
Soby Mathew authored
This patch reworks the crash reporting mechanism to further optimise the stack and code size. The reporting makes use of assembly console functions to avoid calling C Runtime to report the CPU state. The crash buffer requirement is reduced to 64 bytes with this implementation. The crash buffer is now part of per-cpu data which makes retrieving the crash buffer trivial. Also now panic() will use crash reporting if invoked from BL3-1. Fixes ARM-software/tf-issues#199 Change-Id: I79d27a4524583d723483165dc40801f45e627da5
-
Soby Mathew authored
The patch implements a macro ASM_ASSERT() which can be invoked from assembly code. When assertion happens, file name and line number of the check is written to the crash console. Fixes ARM-software/tf-issues#95 Change-Id: I6f905a068e1c0fa4f746d723f18df60daaa00a86
-
Soby Mathew authored
This patch introduces platform APIs to initialise and print a character on a designated crash console. For the FVP platform, PL011_UART0 is the designated crash console. The platform porting guide is also updated to document the new APIs. Change-Id: I5e97d8762082e0c88c8c9bbb479353eac8f11a66
-
Soby Mathew authored
This patch adds baud rate and UART clock frequency as parameters to the pl011 driver api console_init(). This allows each platform to specify UART clock and baud rate according to their specific hardware implementation. Fixes ARM-software/tf-issues#215 Change-Id: Id13eef70a1c530e709b34dd1e6eb84db0797ced2
-
Soby Mathew authored
This patch replaces the pl011 console family of functions with their equivalents defined in assembly. The baud rate is defined by the PL011_BAUDRATE macro and IBRD and FBRD values for pl011 are computed statically. This patch will enable us to invoke the console functions without the C Runtime Stack. Change-Id: Ic3f7b7370ded38bf9020bf746b362081b76642c7
-
Achin Gupta authored
This patch reworks the manner in which the M,A, C, SA, I, WXN & EE bits of SCTLR_EL3 & SCTLR_EL1 are managed. The EE bit is cleared immediately after reset in EL3. The I, A and SA bits are set next in EL3 and immediately upon entry in S-EL1. These bits are no longer managed in the blX_arch_setup() functions. They do not have to be saved and restored either. The M, WXN and optionally the C bit are set in the enable_mmu_elX() function. This is done during both the warm and cold boot paths. Fixes ARM-software/tf-issues#226 Change-Id: Ie894d1a07b8697c116960d858cd138c50bc7a069
-
Achin Gupta authored
This patch removes the allocation of memory for coherent stacks, associated accessor function and some dead code which called the accessor function. It also updates the porting guide to remove the concept and the motivation behind using stacks allocated in coherent memory. Fixes ARM-software/tf-issues#198 Change-Id: I00ff9a04f693a03df3627ba39727e3497263fc38
-
- 25 Jul, 2014 6 commits
-
-
danh-arm authored
Add support for printing version at runtime v3
-
Juan Castillo authored
Print out Trusted Firmware version at runtime at each BL stage. Message consists of TF version as defined statically in the Makefile (e.g. v0.4), build mode (debug|release) and a customizable build string: 1. By defining BUILD_STRING in command line when building TF 2. Default string is git commit ID 3. Empty if git meta-data is not available Fixes ARM-software/tf-issues#203 Change-Id: I5c5ba438f66ab68810427d76b49c5b9177a957d6
-
Dan Handley authored
FVP: Ensure system reset wake-up results in cold boot
-
Dan Handley authored
Define ARM_GIC_ARCH default value for all platforms
-
Dan Handley authored
Implement a leaner printf for Trusted Firmware
-
Soby Mathew authored
This patch implements a "tf_printf" which supports only the commonly used format specifiers in Trusted Firmware, which uses a lot less stack space than the stdlib printf function. Fixes ARM-software/tf-issues#116 Change-Id: I7dfa1944f4c1e634b3e2d571f49afe02d109a351
-
- 19 Jul, 2014 3 commits
-
-
Achin Gupta authored
This patch uses stacks allocated in normal memory to enable the MMU early in the warm boot path thus removing the dependency on stacks allocated in coherent memory. Necessary cache and stack maintenance is performed when a cpu is being powered down and up. This avoids any coherency issues that can arise from reading speculatively fetched stale stack memory from another CPUs cache. These changes affect the warm boot path in both BL3-1 and BL3-2. The EL3 system registers responsible for preserving the MMU state are not saved and restored any longer. Static values are used to program these system registers when a cpu is powered on or resumed from suspend. Change-Id: I8357e2eb5eb6c5f448492c5094b82b8927603784
-
Achin Gupta authored
This patch adds a 'flags' parameter to each exception level specific function responsible for enabling the MMU. At present only a single flag which indicates whether the data cache should also be enabled is implemented. Subsequent patches will use this flag when enabling the MMU in the warm boot paths. Change-Id: I0eafae1e678c9ecc604e680851093f1680e9cefa
-
Achin Gupta authored
This patch reworks the cold boot path across the BL1, BL2, BL3-1 and BL3-2 boot loader stages to not use stacks allocated in coherent memory for early platform setup and enabling the MMU. Stacks allocated in normal memory are used instead. Attributes for stack memory change from nGnRnE when the MMU is disabled to Normal WBWA Inner-shareable when the MMU and data cache are enabled. It is possible for the CPU to read stale stack memory after the MMU is enabled from another CPUs cache. Hence, it is unsafe to turn on the MMU and data cache while using normal stacks when multiple CPUs are a part of the same coherency domain. It is safe to do so in the cold boot path as only the primary cpu executes it. The secondary cpus are in a quiescent state. This patch does not remove the allocation of coherent stack memory. That is done in a subsequent patch. Change-Id: I12c80b7c7ab23506d425c5b3a8a7de693498f830
-
- 17 Jul, 2014 1 commit
-
-
Sandrine Bailleux authored
The ARM_GIC_ARCH build option was supposed to default to 2 on all platforms. However, the default value was set in the FVP makefile so for all other platforms it wasn't even defined. This patch moves the default value to the main Makefile. The platform port can then override it if needed. Change-Id: I8e2da1cce7ffa3ed18814bbdcbcf2578101f18a6
-
- 16 Jul, 2014 1 commit
-
-
Juan Castillo authored
platform_get_entrypoint() did not consider that a wakeup due to System Reset Pin (by reading the power controller's PSYSR) requires a cold boot. As a result, the code would execute the warm boot path and eventually panic because entrypoint mailboxes are empty. This patch ensures that the following wake-up reasons result in cold boot: - Cold Power-on - System Reset Pin (includes reset by software) Fixes ARM-software/tf-issues#217 Change-Id: I65ae0a0f7a46548b575900a5aac107d352b0e2cd
-
- 11 Jul, 2014 4 commits
-
-
danh-arm authored
Allow FP register context to be optional at build time
-
danh-arm authored
Add support for BL3-0 image (v2)
-
danh-arm authored
fvp: Reuse BL1 and BL2 memory through image overlaying (v2)
-
Sandrine Bailleux authored
Update the "Memory layout on FVP platforms" section in the Firmware Design document to reflect the overlaying of BL1 and BL2 images by BL3-1 and BL3-2. Also update the Porting Guide document to mention the BL31_PROGBITS_LIMIT and BL32_PROGBITS_LIMIT constants. Change-Id: I0b23dae5b5b4490a01be7ff7aa80567cff34bda8
-
- 10 Jul, 2014 3 commits
-
-
Sandrine Bailleux authored
- Add support for loading a BL3-0 image in BL2. Information about memory extents is populated by platform-specific code. Subsequent handling of BL3-0 is also platform specific. The BL2 main function has been broken down to improve readability. The BL3-2 image is now loaded before the BL3-3 image to align with the boot flow. - Build system: Add support for specifying a BL3-0 image that will be included into the FIP image. - IO FIP driver: Add support for identifying a BL3-0 image inside a FIP image. - Update the documentation to reflect the above changes. Change-Id: I067c184afd52ccaa86569f13664757570c86fc48
-
Sandrine Bailleux authored
This patch re-organizes the memory layout on FVP as to give the BL3-2 image as much memory as possible. Considering these two facts: - not all images need to live in memory at the same time. Once in BL3-1, the memory used by BL1 and BL2 can be reclaimed. - when BL2 loads the BL3-1 and BL3-2 images, it only considers the PROGBITS sections of those 2 images. The memory occupied by the NOBITS sections will be touched only at execution of the BL3-x images; Then it is possible to choose the different base addresses such that the NOBITS sections of BL3-1 and BL3-2 overlay BL1 and BL2. On FVP we choose to put: - BL1 and BL3-1 at the top of the Trusted RAM, with BL3-1 NOBITS sections overlaying BL1; - BL3-2 at the bottom of the Trusted RAM, with its NOBITS sections overlaying BL2; This is illustrated by the following diagram: 0x0404_0000 ------------ ------------------ | BL1 | <= | BL3-1 NOBITS | ------------ <= ------------------ | | <= | BL3-1 PROGBITS | ------------ ------------------ | BL2 | <= | BL3-2 NOBITS | ------------ <= ------------------ | | <= | BL3-2 PROGBITS | 0x0400_0000 ------------ ------------------ New platform-specific constants have been introduced to easily check at link time that BL3-1 and BL3-2 PROGBITS sections don't overwrite BL1 and BL2. These are optional and the platform code is free to define them or not. If not defined, the linker won't attempt to check image overlaying. Fixes ARM-software/tf-issues#117 Change-Id: I5981d1c3d66ee70eaac8bd052630c9ac6dd8b042
-
danh-arm authored
TF issue 109
-