- 20 Sep, 2016 1 commit
-
-
Haojian Zhuang authored
Now only support GPT partition table. MBR partition table isn't supported yet. Signed-off-by: Haojian Zhuang <haojian.zhuang@linaro.org>
-
- 12 Aug, 2016 1 commit
-
-
Haojian Zhuang authored
Support CMD23. When CMD23 is used, CMD12 could be avoided. Two scenarios: 1. CMD17 for single block, CMD18 + CMD12 for multiple blocks. 2. CMD23 + CMD18 for both single block and multiple blocks. The emmc_init() should initialize whether CMD23 is supported or not. Signed-off-by: Haojian Zhuang <haojian.zhuang@linaro.org>
-
- 10 Aug, 2016 10 commits
-
-
Soby Mathew authored
This patch implements the support for SP_MIN in FVP. The SP_MIN platform APIs are implemented and the required makefile support is added for FVP. Change-Id: Id50bd6093eccbd5e38894e3fd2b20d5baeac5452
-
Soby Mathew authored
This patch adds AArch32 support for FVP and implements common platform APIs like `plat_get_my_stack`, `plat_set_my_stack`, `plat_my_core_cos` for AArch32. Only Multi Processor(MP) implementations of these functions are considered in this patch. The ARM Standard platform layer helpers are implemented for AArch32 and the common makefiles are modified to cater for both AArch64 and AArch32 builds. Compatibility with the deprecated platform API is not supported for AArch32. Change-Id: Iad228400613eec91abf731b49e21a15bcf2833ea
-
Soby Mathew authored
This patch adds a minimal AArch32 secure payload SP_MIN. It relies on PSCI library to initialize the normal world context. It runs in Monitor mode and uses the runtime service framework to handle SMCs. It is added as a BL32 component in the Trusted Firmware source tree. Change-Id: Icc04fa6b242025a769c1f6c7022fde19459c43e9
-
Soby Mathew authored
This patch adds AArch32 support to PSCI library, as follows : * The `psci_helpers.S` is implemented for AArch32. * AArch32 version of internal helper function `psci_get_ns_ep_info()` is defined. * The PSCI Library is responsible for the Non Secure context initialization. Hence a library interface `psci_prepare_next_non_secure_ctx()` is introduced to enable EL3 runtime firmware to initialize the non secure context without invoking context management library APIs. Change-Id: I25595b0cc2dbfdf39dbf7c589b875cba33317b9d
-
Soby Mathew authored
This patch adds AArch32 support to cpu ops, context management, per-cpu data and spinlock libraries. The `entrypoint_info` structure is modified to add support for AArch32 register arguments. The CPU operations for AEM generic cpu in AArch32 mode is also added. Change-Id: I1e52e79f498661d8f31f1e7b3a29e222bc7a4483
-
Soby Mathew authored
This patch defines a SMCC context to save and restore registers during a SMC call. It also adds appropriate helpers to save and restore from this context for use by AArch32 secure payload and BL stages. Change-Id: I64c8d6fe1d6cac22e1f1f39ea1b54ee1b1b72248
-
Soby Mathew authored
This patch adds an API in runtime service framework to invoke the registered handler corresponding to the SMC function identifier. This is helpful for AArch32 because the number of arguments required by the handler is more than registers available as per AArch32 program calling conventions and requires the use of stack. Hence this new API will do the necessary argument setup and invoke the appropriate handler. Although this API is primarily intended for AArch32, it can be used for AArch64 as well. Change-Id: Iefa15947fe5a1df55b0859886e677446a0fd7241
-
Soby Mathew authored
This patch adds translation library supports for AArch32 platforms. The library only supports long descriptor formats for AArch32. The `enable_mmu_secure()` enables the MMU for secure world with `TTBR0` pointing to the populated translation tables. Change-Id: I061345b1779391d098e35e7fe0c76e3ebf850e08
-
Soby Mathew authored
This patch adds various assembly helpers for AArch32 like : * cache management : Functions to flush, invalidate and clean cache by MVA. Also helpers to do cache operations by set-way are also added. * stack management: Macros to declare stack and get the current stack corresponding to current CPU. * Misc: Macros to access co processor registers in AArch32, macros to define functions in assembly, assert macros, generic `do_panic()` implementation and function to zero block of memory. Change-Id: I7b78ca3f922c0eda39beb9786b7150e9193425be
-
Soby Mathew authored
This patch adds the essential AArch32 architecture helpers arch.h and arch_helpers.h and modifies `_types.h` to add AArch32 support. A new build option `ARCH` is defined in the top level makefile to enable the component makefiles to choose the right files based on the Architecture it is being build for. Depending on this flag, either `AARCH32` or `AARCH64` flag is defined by the Makefile. The default value of `ARCH` flag is `aarch64`. The AArch32 build support will be added in a later patch. Change-Id: I405e5fac02db828a55cd25989b572b64cb005241
-
- 09 Aug, 2016 1 commit
-
-
Soby Mathew authored
This patch moves the macro SIZE_FROM_LOG2_WORDS() defined in `arch.h` to `utils.h` as it is utility macro. Change-Id: Ia8171a226978f053a1ee4037f80142c0a4d21430
-
- 27 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch fixes the offset of GICD_IROUTER register defined in gicv3.h. Although the GICv3 documention mentions that the offset for this register is 0x6100-0x7FD8, the offset calculation for an interrupt id `n` is : 0x6000 + 8n, where n >= 32 This requires the offset for GICD_IROUTER to be defined as 0x6000. Fixes ARM-software/tf-issues#410 Change-Id: If9e91e30d946afe7f1f60fea4f065c7567093fa8
-
- 25 Jul, 2016 2 commits
-
-
Sandrine Bailleux authored
This patch adds some runtime checks to prevent some potential pointer overflow issues in the is_mem_free() function. The overflow could happen in the case where the end addresses, computed as the sum of a base address and a size, results in a value large enough to wrap around. This, in turn, could lead to unpredictable behaviour. If such an overflow is detected, the is_mem_free() function will now declare the memory region as not free. The overflow is detected using a new macro, called check_uptr_overflow(). This patch also modifies all other places in the 'bl_common.c' file where an end address was computed as the sum of a base address and a size and instead keeps the two values separate. This avoids the need to handle pointer overflows everywhere. The code doesn't actually need to compute any end address before the is_mem_free() function is called other than to print information message to the serial output. This patch also introduces 2 slight changes to the reserve_mem() function: - It fixes the end addresses passed to choose_mem_pos(). It was incorrectly passing (base + size) instead of (base + size - 1). - When the requested allocation size is 0, the function now exits straight away and says so using a warning message. Previously, it used to actually reserve some memory. A zero-byte allocation was not considered as a special case so the function was using the same top/bottom allocation mechanism as for any other allocation. As a result, the smallest area of memory starting from the requested base address within the free region was reserved. Change-Id: I0e695f961e24e56ffe000718014e0496dc6e1ec6
-
Antonio Nino Diaz authored
Compile option `ARM_BOARD_OPTIMISE_MMAP` has been renamed to `ARM_BOARD_OPTIMISE_MEM` because it now applies not only to defines related to the translation tables but to the image size as well. The defines `PLAT_ARM_MAX_BL1_RW_SIZE`, `PLAT_ARM_MAX_BL2_SIZE` and `PLAT_ARM_MAX_BL31_SIZE` have been moved to the file board_arm_def.h. This way, ARM platforms no longer have to set their own values if `ARM_BOARD_OPTIMISE_MEM=0` and they can specify optimized values otherwise. The common sizes have been set to the highest values used for any of the current build configurations. This is needed because in some build configurations some images are running out of space. This way there is a common set of values known to work for all of them and it can be optimized for each particular platform if needed. The space reserved for BL2 when `TRUSTED_BOARD_BOOT=0` has been increased. This is needed because when memory optimisations are disabled the values for Juno of `PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` are higher. If in this situation the code is compiled in debug mode and with "-O0", the code won't fit. Change-Id: I70a3d8d3a0b0cad1d6b602c01a7ea334776e718e
-
- 19 Jul, 2016 2 commits
-
-
Soby Mathew authored
This patch moves assembler macros which are not architecture specific to a new file `asm_macros_common.S` and moves the `el3_common_macros.S` into `aarch64` specific folder. Change-Id: I444a1ee3346597bf26a8b827480cd9640b38c826
-
Soby Mathew authored
This patch introduces the PSCI Library interface. The major changes introduced are as follows: * Earlier BL31 was responsible for Architectural initialization during cold boot via bl31_arch_setup() whereas PSCI was responsible for the same during warm boot. This functionality is now consolidated by the PSCI library and it does Architectural initialization via psci_arch_setup() during both cold and warm boots. * Earlier the warm boot entry point was always `psci_entrypoint()`. This was not flexible enough as a library interface. Now PSCI expects the runtime firmware to provide the entry point via `psci_setup()`. A new function `bl31_warm_entrypoint` is introduced in BL31 and the previous `psci_entrypoint()` is deprecated. * The `smc_helpers.h` is reorganized to separate the SMC Calling Convention defines from the Trusted Firmware SMC helpers. The former is now in a new header file `smcc.h` and the SMC helpers are moved to Architecture specific header. * The CPU context is used by PSCI for context initialization and restoration after power down (PSCI Context). It is also used by BL31 for SMC handling and context management during Normal-Secure world switch (SMC Context). The `psci_smc_handler()` interface is redefined to not use SMC helper macros thus enabling to decouple the PSCI context from EL3 runtime firmware SMC context. This enables PSCI to be integrated with other runtime firmware using a different SMC context. NOTE: With this patch the architectural setup done in `bl31_arch_setup()` is done as part of `psci_setup()` and hence `bl31_platform_setup()` will be invoked prior to architectural setup. It is highly unlikely that the platform setup will depend on architectural setup and cause any failure. Please be be aware of this change in sequence. Change-Id: I7f497a08d33be234bbb822c28146250cb20dab73
-
- 18 Jul, 2016 3 commits
-
-
Soby Mathew authored
This patch moves the PSCI services and BL31 frameworks like context management and per-cpu data into new library components `PSCI` and `el3_runtime` respectively. This enables PSCI to be built independently from BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant PSCI library sources and gets included by `bl31.mk`. Other changes which are done as part of this patch are: * The runtime services framework is now moved to the `common/` folder to enable reuse. * The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture specific folder. * The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder to `plat/common` folder. The original file location now has a stub which just includes the file from new location to maintain platform compatibility. Most of the changes wouldn't affect platform builds as they just involve changes to the generic bl1.mk and bl31.mk makefiles. NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION. Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
-
Soby Mathew authored
This patch fixes some coding guideline warnings reported by the checkpatch script. Only files related to upcoming feature development have been fixed. Change-Id: I26fbce75c02ed62f00493ed6c106fe7c863ddbc5
-
Soby Mathew authored
This patch reworks type usage in generic code, drivers and ARM platform files to make it more portable. The major changes done with respect to type usage are as listed below: * Use uintptr_t for storing address instead of uint64_t or unsigned long. * Review usage of unsigned long as it can no longer be assumed to be 64 bit. * Use u_register_t for register values whose width varies depending on whether AArch64 or AArch32. * Use generic C types where-ever possible. In addition to the above changes, this patch also modifies format specifiers in print invocations so that they are AArch64/AArch32 agnostic. Only files related to upcoming feature development have been reworked. Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
-
- 12 Jul, 2016 1 commit
-
-
Naga Sureshkumar Relli authored
This patch adds cpumerrsr_el1 and l2merrsr_el1 to the register dump on error for applicable CPUs. These registers hold the ECC errors on L1 and L2 caches. This patch updates the A53, A57, A72, A73 (l2merrsr_el1 only) CPU libraries. Signed-off-by: Naga Sureshkumar Relli <nagasure@xilinx.com>
-
- 08 Jul, 2016 8 commits
-
-
Sandrine Bailleux authored
On ARM CSS platforms, the whole flash used to be mapped as executable. This is not required, given that the flash is used to store the BL1 and FIP images and: - The FIP is not executed in place, its images are copied to RAM and executed from there. - BL1 is executed in place from flash but only its code needs to be mapped as executable and platform code takes care of re-mapping BL1's read-only section as executable. Therefore, this patch now maps the flash as non-executable by default on these platforms. This increases security by restricting the executable region to what is strictly needed. This patch also adds some comments to clarify the memory mapping attributes on these platforms. Change-Id: I4db3c145508bea1f43fbe0f6dcd551e1aec1ecd3
-
Sandrine Bailleux authored
The arm_setup_page_tables() function used to expect a single set of addresses defining the extents of the whole read-only section, code and read-only data mixed up, which was mapped as executable. This patch changes this behaviour. arm_setup_page_tables() now expects 2 separate sets of addresses: - the extents of the code section; - the extents of the read-only data section. The code is mapped as executable, whereas the data is mapped as execute-never. New #defines have been introduced to identify the extents of the code and the read-only data section. Given that all BL images except BL1 share the same memory layout and linker script structure, these #defines are common across these images. The slight memory layout differences in BL1 have been handled by providing values specific to BL1. Note that this patch also affects the Xilinx platform port, which uses the arm_setup_page_tables() function. It has been updated accordingly, such that the memory mappings on this platform are unchanged. This is achieved by passing null values as the extents of the read-only data section so that it is ignored. As a result, the whole read-only section is still mapped as executable. Fixes ARM-software/tf-issues#85 Change-Id: I1f95865c53ce6e253a01286ff56e0aa1161abac5
-
Sandrine Bailleux authored
At the moment, all BL images share a similar memory layout: they start with their code section, followed by their read-only data section. The two sections are contiguous in memory. Therefore, the end of the code section and the beginning of the read-only data one might share a memory page. This forces both to be mapped with the same memory attributes. As the code needs to be executable, this means that the read-only data stored on the same memory page as the code are executable as well. This could potentially be exploited as part of a security attack. This patch introduces a new build flag called SEPARATE_CODE_AND_RODATA, which isolates the code and read-only data on separate memory pages. This in turn allows independent control of the access permissions for the code and read-only data. This has an impact on memory footprint, as padding bytes need to be introduced between the code and read-only data to ensure the segragation of the two. To limit the memory cost, the memory layout of the read-only section has been changed in this case. - When SEPARATE_CODE_AND_RODATA=0, the layout is unchanged, i.e. the read-only section still looks like this (padding omitted): | ... | +-------------------+ | Exception vectors | +-------------------+ | Read-only data | +-------------------+ | Code | +-------------------+ BLx_BASE In this case, the linker script provides the limits of the whole read-only section. - When SEPARATE_CODE_AND_RODATA=1, the exception vectors and read-only data are swapped, such that the code and exception vectors are contiguous, followed by the read-only data. This gives the following new layout (padding omitted): | ... | +-------------------+ | Read-only data | +-------------------+ | Exception vectors | +-------------------+ | Code | +-------------------+ BLx_BASE In this case, the linker script now exports 2 sets of addresses instead: the limits of the code and the limits of the read-only data. Refer to the Firmware Design guide for more details. This provides platform code with a finer-grained view of the image layout and allows it to map these 2 regions with the appropriate access permissions. Note that SEPARATE_CODE_AND_RODATA applies to all BL images. Change-Id: I936cf80164f6b66b6ad52b8edacadc532c935a49
-
Sandrine Bailleux authored
This patch introduces the round_up() and round_down() macros, which round up (respectively down) a value to a given boundary. The boundary must be a power of two. Change-Id: I589dd1074aeb5ec730dd523b4ebf098d55a7e967
-
Sandrine Bailleux authored
This patch introduces a new header file: include/lib/utils.h. Its purpose is to provide generic macros and helper functions that are independent of any BL image, architecture, platform and even not specific to Trusted Firmware. For now, it contains only 2 macros: ARRAY_SIZE() and IS_POWER_OF_TWO(). These were previously defined in bl_common.h and xlat_tables.c respectively. bl_common.h includes utils.h to retain compatibility for platforms that relied on bl_common.h for the ARRAY_SIZE() macro. Upstream platform ports that use this macro have been updated to include utils.h. Change-Id: I960450f54134f25d1710bfbdc4184f12c049a9a9
-
Sandrine Bailleux authored
This patch introduces the MT_EXECUTE/MT_EXECUTE_NEVER memory mapping attributes in the translation table library to specify the access permissions for instruction execution of a memory region. These new attributes should be used only for normal, read-only memory regions. For other types of memory, the translation table library still enforces the following rules, regardless of the MT_EXECUTE/MT_EXECUTE_NEVER attribute: - Device memory is always marked as execute-never. - Read-write normal memory is always marked as execute-never. Change-Id: I8bd27800a8c1d8ac1559910caf4a4840cf25b8b0
-
Sandrine Bailleux authored
This patch introduces the arm_setup_page_tables() function to set up page tables on ARM platforms. It replaces the arm_configure_mmu_elx() functions and does the same thing except that it doesn't enable the MMU at the end. The idea is to reduce the amount of per-EL code that is generated by the C preprocessor by splitting the memory regions definitions and page tables creation (which is generic) from the MMU enablement (which is the only per-EL configuration). As a consequence, the call to the enable_mmu_elx() function has been moved up into the plat_arch_setup() hook. Any other ARM standard platforms that use the functions `arm_configure_mmu_elx()` must be updated. Change-Id: I6f12a20ce4e5187b3849a8574aac841a136de83d
-
Soby Mathew authored
The per-cpu stacks should be aligned to the cache-line size and the `declare_stack` helper in asm_macros.S macro assumed a cache-line size of 64 bytes. The platform defines the cache-line size via CACHE_WRITEBACK_GRANULE macro. This patch modifies `declare_stack` helper macro to derive stack alignment from the platform defined macro. Change-Id: I1e1b00fc8806ecc88190ed169f4c8d3dd25fe95b
-
- 16 Jun, 2016 2 commits
-
-
Yatharth Kochar authored
This patch adds following optional PSCI STAT functions: - PSCI_STAT_RESIDENCY: This call returns the amount of time spent in power_state in microseconds, by the node represented by the `target_cpu` and the highest level of `power_state`. - PSCI_STAT_COUNT: This call returns the number of times a `power_state` has been used by the node represented by the `target_cpu` and the highest power level of `power_state`. These APIs provides residency statistics for power states that has been used by the platform. They are implemented according to v1.0 of the PSCI specification. By default this optional feature is disabled in the PSCI implementation. To enable it, set the boolean flag `ENABLE_PSCI_STAT` to 1. This also sets `ENABLE_PMF` to 1. Change-Id: Ie62e9d37d6d416ccb1813acd7f616d1ddd3e8aff
-
Yatharth Kochar authored
This patch adds Performance Measurement Framework(PMF) in the ARM Trusted Firmware. PMF is implemented as a library and the SMC interface is provided through ARM SiP service. The PMF provides capturing, storing, dumping and retrieving the time-stamps, by enabling the development of services by different providers, that can be easily integrated into ARM Trusted Firmware. The PMF capture and retrieval APIs can also do appropriate cache maintenance operations to the timestamp memory when the caller indicates so. `pmf_main.c` consists of core functions that implement service registration, initialization, storing, dumping and retrieving the time-stamp. `pmf_smc.c` consists SMC handling for registered PMF services. `pmf.h` consists of the macros that can be used by the PMF service providers to register service and declare time-stamp functions. `pmf_helpers.h` consists of internal macros that are used by `pmf.h` By default this feature is disabled in the ARM trusted firmware. To enable it set the boolean flag `ENABLE_PMF` to 1. NOTE: The caller is responsible for specifying the appropriate cache maintenance flags and for acquiring/releasing appropriate locks before/after capturing/retrieving the time-stamps. Change-Id: Ib45219ac07c2a81b9726ef6bd9c190cc55e81854
-
- 03 Jun, 2016 4 commits
-
-
Soby Mathew authored
A production ROM with TBB enabled must have the ability to boot test software before a real ROTPK is deployed (e.g. manufacturing mode). Previously the function plat_get_rotpk_info() must return a valid ROTPK for TBB to succeed. This patch adds an additional bit `ROTPK_NOT_DEPLOYED` in the output `flags` parameter from plat_get_rotpk_info(). If this bit is set, then the ROTPK in certificate is used without verifying against the platform value. Fixes ARM-software/tf-issues#381 Change-Id: Icbbffab6bff8ed76b72431ee21337f550d8fdbbb
-
Dan Handley authored
* Move libfdt API headers to include/lib/libfdt * Add libfdt.mk helper makefile * Remove unused libfdt files * Minor changes to fdt.h and libfdt.h to make them C99 compliant Co-Authored-By: Jens Wiklander <jens.wiklander@linaro.org> Change-Id: I425842c2b111dcd5fb6908cc698064de4f77220e
-
Dan Handley authored
* Move stdlib header files from include/stdlib to include/lib/stdlib for consistency with other library headers. * Fix checkpatch paths to continue excluding stdlib files. * Create stdlib.mk to define the stdlib source files and include directories. * Include stdlib.mk from the top level Makefile. * Update stdlib header path in the fip_create Makefile. * Update porting-guide.md with the new paths. Change-Id: Ia92c2dc572e9efb54a783e306b5ceb2ce24d27fa
-
Soby Mathew authored
The system registers that are saved and restored in CPU context include AArch32 systems registers like SPSR_ABT, SPSR_UND, SPSR_IRQ, SPSR_FIQ, DACR32_EL2, IFSR32_EL2 and FPEXC32_EL2. Accessing these registers on an AArch64-only (i.e. on hardware that does not implement AArch32, or at least not at EL1 and higher ELs) platform leads to an exception. This patch introduces the build option `CTX_INCLUDE_AARCH32_REGS` to specify whether to include these AArch32 systems registers in the cpu context or not. By default this build option is set to 1 to ensure compatibility. AArch64-only platforms must set it to 0. A runtime check is added in BL1 and BL31 cold boot path to verify this. Fixes ARM-software/tf-issues#386 Change-Id: I720cdbd7ed7f7d8516635a2ec80d025f478b95ee
-
- 02 Jun, 2016 1 commit
-
-
Sandrine Bailleux authored
As of commit e1ea9290, if the attributes of an inner memory region are different than the outer region, new page tables are generated regardless of how "restrictive" they are. This patch removes an out-dated comment still referring to the old priority system based on which attributes were more restrictive. Change-Id: Ie7fc1629c90ea91fe50315145f6de2f3995e5e00
-
- 01 Jun, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds ARM Cortex-A73 MPCore Processor support in the CPU specific operations framework. It also includes this support for the Base FVP port. Change-Id: I0e26b594f2ec1d28eb815db9810c682e3885716d
-
- 27 May, 2016 1 commit
-
-
Caesar Wang authored
On some platform gpio can set/get pull status when input, add these function so we can set/get gpio pull status when need it. And they are optional function.
-
- 26 May, 2016 1 commit
-
-
Sandrine Bailleux authored
The documentation of the GNU assembler specifies the following about the .align assembler directive: "the padding bytes are normally zero. However, on some systems, if the section is marked as containing code and the fill value is omitted, the space is filled with no-op instructions." (see https://sourceware.org/binutils/docs/as/Align.html) When building Trusted Firmware, the AArch64 GNU assembler uses a mix of zero bytes and no-op instructions as the padding bytes to align exception vectors. This patch mandates to use zero bytes to be stored in the padding bytes in the exception vectors. In the AArch64 instruction set, no valid instruction encodes as zero so this effectively inserts illegal instructions. Should this code end up being executed for any reason, it would crash immediately. This gives us an extra protection against misbehaving code at no extra cost. Change-Id: I4f2abb39d0320ca0f9d467fc5af0cb92ae297351
-