- 28 Jun, 2017 1 commit
-
-
Soby Mathew authored
This patch makes the necessary changes to enable ARM platform to successfully integrate CryptoCell during Trusted Board Boot. The changes are as follows: * A new build option `ARM_CRYPTOCELL_INTEG` is introduced to select the CryptoCell crypto driver for Trusted Board boot. * The TrustZone filter settings for Non Secure DRAM is modified to allow CryptoCell to read this memory. This is required to authenticate BL33 which is loaded into the Non Secure DDR. * The CSS platforms are modified to use coherent stacks in BL1 and BL2 when CryptoCell crypto is selected. This is because CryptoCell makes use of DMA to transfer data and the CryptoCell SBROM library allocates buffers on the stack during signature/hash verification. Change-Id: I1e6f6dcd1899784f1edeabfa2a9f279bbfb90e31 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 26 Jun, 2017 2 commits
-
-
Dimitris Papastamos authored
On Juno AArch32, the L2 cache may contain garbage after the warm reset from AArch64 to AArch32. This is all fine until the MMU is configured and the data caches enabled. To avoid fetching stale data from the L2 unified cache, invalidate it before the warm reset to AArch32 state. Change-Id: I7d27e810692c02c3e83c9f31de67f6bae59a960a Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
-
Dimitris Papastamos authored
Before BL2 loads the SCP ram firmware, `SCP_BOOT_CFG_ADDR` specifies the primary core. After the SCP ram firmware has started executing, `SCP_BOOT_CFG_ADDR` is modified. This is not normally an issue but the Juno AArch32 boot flow is a special case. BL1 does a warm reset into AArch32 and the core jumps to the `sp_min` entrypoint. This is effectively a `RESET_TO_SP_MIN` configuration. `sp_min` has to be able to determine the primary core and hence we need to restore `SCP_BOOT_CFG_ADDR` to the cold boot value before `sp_min` runs. This magically worked when booting on A53 because the core index was zero and it just so happened to match with the new value in `SCP_BOOT_CFG_ADDR`. Change-Id: I105425c680cf6238948625c1d1017b01d3517c01 Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
-
- 22 Jun, 2017 1 commit
-
-
Douglas Raillard authored
These errata are only applicable to AArch64 state. See the errata notice for more details: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.epm048406/index.html Introduce the build options ERRATA_A53_835769 and ERRATA_A53_843419. Enable both of them for Juno. Apply the 835769 workaround as following: * Compile with -mfix-cortex-a53-835769 * Link with --fix-cortex-a53-835769 Apply the 843419 workaround as following: * Link with --fix-cortex-a53-843419 The erratum 843419 workaround can lead the linker to create new sections suffixed with "*.stub*" and 4KB aligned. The erratum 835769 can lead the linker to create new "*.stub" sections with no particular alignment. Also add support for LDFLAGS_aarch32 and LDFLAGS_aarch64 in Makefile for architecture-specific linker options. Change-Id: Iab3337e338b7a0a16b0d102404d9db98c154f8f8 Signed-off-by: Douglas Raillard <douglas.raillard@arm.com>
-
- 20 Jun, 2017 1 commit
-
-
Dimitris Papastamos authored
Commit 6de8b24f broke Juno AArch32 build. Change-Id: Ied70d9becb86e53ccb46a2e3245e2a551d1bf701 Signed-off-by: Dimitris Papastamos <dimitris.papastamos@arm.com>
-
- 14 Jun, 2017 1 commit
-
-
Varun Wadekar authored
This patch makes all the defines in the CPU libraries unique, by prefixing them with the CPU name. NOTE: PLATFORMS USING THESE MACROS WILL HAVE TO UPDATE THEIR CODE TO START USING THE UPDATED NAMES Signed-off-by: Varun Wadekar <vwadekar@nvidia.com>
-
- 05 Jun, 2017 1 commit
-
-
Soby Mathew authored
This patch adds the memory map region for the SCMI payload memory and maps the Juno core indices to SCMI power domains via the `plat_css_core_pos_to_scmi_dmn_id_map` array. Change-Id: I0d2bb2a719ff5b6a9d8e22e91e1625ab14453665 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 23 May, 2017 2 commits
-
-
Masahiro Yamada authored
The header tbbr_oid.h contains OIDs obtained by ARM Ltd. so there is no good reason to use platform_oid.h Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
Masahiro Yamada authored
Platforms aligned with TBBR are supposed to use their own OIDs, but defining the same macros with different OIDs does not provide any value (at least technically). For easier use of TBBR, this commit allows platforms to reuse the OIDs obtained by ARM Ltd. This will be useful for non-ARM vendors that do not need their own extension fields in their certificate files. The OIDs of ARM Ltd. have been moved to include/tools_share/tbbr_oid.h Platforms can include <tbbr_oid.h> instead of <platform_oid.h> by defining USE_TBBR_DEFS as 1. USE_TBBR_DEFS is 0 by default to keep the backward compatibility. For clarification, I inserted a blank line between headers from the include/ directory (#include <...>) and ones from a local directory (#include "..." ). Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
- 16 May, 2017 1 commit
-
-
Soby Mathew authored
The commit abd2aba9 introduced a regression to the AArch32 sp_min Juno build. This patch fixes that. Change-Id: I4b141717684d6aee60c761ea17f23170aa6708c3 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 03 May, 2017 1 commit
-
-
dp-arm authored
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 29 Apr, 2017 1 commit
-
-
Scott Branden authored
utils.h is included in various header files for the defines in it. Some of the other header files only contain defines. This allows the header files to be shared between host and target builds for shared defines. Recently types.h has been included in utils.h as well as some function prototypes. Because of the inclusion of types.h conflicts exist building host tools abd these header files now. To solve this problem, move the defines to utils_def.h and have this included by utils.h and change header files to only include utils_def.h and not pick up the new types.h being introduced. Fixes ARM-software/tf-issues#461 Signed-off-by: Scott Branden <scott.branden@broadcom.com> Remove utils_def.h from utils.h This patch removes utils_def.h from utils.h as it is not required. And also makes a minor change to ensure Juno platform compiles. Change-Id: I10cf1fb51e44a8fa6dcec02980354eb9ecc9fa29
-
- 24 Apr, 2017 1 commit
-
-
Soby Mathew authored
The CSS power management layer previously allowed to suspend system power domain level via both PSCI CPU_SUSPEND and PSCI SYSTEM_SUSPEND APIs. System suspend via PSCI CPU_SUSPEND was always problematic to support because of issues with targeting wakeup interrupts to suspended cores before the per-cpu GIC initialization is done. This is not the case for PSCI SYSTEM_SUSPEND API because all the other cores are expected to be offlined prior to issuing system suspend and PSCI CPU_ON explicit calls will be made to power them on. Hence the Juno platform used to downgrade the PSCI CPU_SUSPEND request for system power domain level to cluster level by overriding the default `plat_psci_pm_ops` exported by CSS layer. Given the direction the new CSS platforms are evolving, it is best to limit the system suspend only via PSCI SYSTEM_SUSPEND API for all CSS platforms. This patch makes changes to allow system suspend only via PSCI SYSTEM_SUSPEND API. The override of `plat_psci_ops` for Juno is removed. Change-Id: Idb30eaad04890dd46074e9e888caeedc50a4b533 Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 20 Apr, 2017 2 commits
-
-
Yatharth Kochar authored
This patch adds support for SP_MIN on JUNO platform. The changes include addition of AArch32 assembly files, JUNO specific SP_MIN make file and miscellaneous changes in ARM platform files to enable support for SP_MIN. Change-Id: Id1303f422fc9b98b9362c757b1a4225a16fffc0b Signed-off-by: Yatharth Kochar <yatharth.kochar@arm.com> Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
Yatharth Kochar authored
Following steps are required to boot JUNO in AArch32 state: 1> BL1, in AArch64 state, loads BL2. 2> BL2, in AArch64 state, initializes DDR. Loads SP_MIN & BL33 (AArch32 executable)images. Calls RUN_IMAGE SMC to go back to BL1. 3> BL1 writes AArch32 executable opcodes, to load and branch at the entrypoint address of SP_MIN, at HI-VECTOR address and then request for warm reset in AArch32 state using RMR_EL3. This patch makes following changes to facilitate above steps: * Added assembly function to carry out step 3 above. * Added region in TZC that enables Secure access to the HI-VECTOR(0xFFFF0000) address space. * AArch32 image descriptor is used, in BL2, to load SP_MIN and BL33 AArch32 executable images. A new flag `JUNO_AARCH32_EL3_RUNTIME` is introduced that controls above changes. By default this flag is disabled. NOTE: BL1 and BL2 are not supported in AArch32 state for JUNO. Change-Id: I091d56a0e6d36663e6d9d2bb53c92c672195d1ec Signed-off-by: Yatharth Kochar <yatharth.kochar@arm.com> Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 31 Mar, 2017 2 commits
-
-
dp-arm authored
Change-Id: I7f3e4bfd46613c6311ba4015d56705414fd6feab Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
dp-arm authored
This function fills the buffer (first argument) with the specified number of bytes (second argument) from the trusted entropy source. This function will be used to initialize the stack protector canary. Change-Id: Iff15aaf4778c13fa883ecb5528fcf9b8479d4489 Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 30 Mar, 2017 1 commit
-
-
Douglas Raillard authored
Juno platform Makefile is responsible for enabling all the relevant errata. As the Juno platform port does not know which revision of Juno the TF is compiled for, the revision of the cores are unknown and so all errata up to this date are needed on at least one revision of Juno. Change-Id: I38e1d6efc17e703f2bd55e0714f8d8fa4778f696 Signed-off-by: Douglas Raillard <douglas.raillard@arm.com>
-
- 20 Mar, 2017 1 commit
-
-
Andre Przywara authored
ARM erratum 855873 applies to all Cortex-A53 CPUs. The recommended workaround is to promote "data cache clean" instructions to "data cache clean and invalidate" instructions. For core revisions of r0p3 and later this can be done by setting a bit in the CPUACTLR_EL1 register, so that hardware takes care of the promotion. As CPUACTLR_EL1 is both IMPLEMENTATION DEFINED and can be trapped to EL3, we set the bit in firmware. Also we dump this register upon crashing to provide more debug information. Enable the workaround for the Juno boards. Change-Id: I3840114291958a406574ab6c49b01a9d9847fec8 Signed-off-by: Andre Przywara <andre.przywara@arm.com>
-
- 08 Mar, 2017 1 commit
-
-
Antonio Nino Diaz authored
TLBI instructions for EL3 won't have the desired effect under specific circumstances in Cortex-A57 r0p0. The workaround is to execute DSB and TLBI twice each time. Even though this errata is only needed in r0p0, the current errata framework is not prepared to apply run-time workarounds. The current one is always applied if compiled in, regardless of the CPU or its revision. This errata has been enabled for Juno. The `DSB` instruction used when initializing the translation tables has been changed to `DSB ISH` as an optimization and to be consistent with the barriers used for the workaround. Change-Id: Ifc1d70b79cb5e0d87e90d88d376a59385667d338 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 15 Feb, 2017 1 commit
-
-
dp-arm authored
On Juno, the secure privileged invasive debug authentication signal (SPIDEN) is controlled by board SCC registers, which by default enable SPIDEN. Disable secure privileged external debug in release builds by programming the appropriate Juno SoC registers. Change-Id: I61045f09a47dc647bbe95e1b7a60e768f5499f49 Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 23 Jan, 2017 1 commit
-
-
Masahiro Yamada authored
One nasty part of ATF is some of boolean macros are always defined as 1 or 0, and the rest of them are only defined under certain conditions. For the former group, "#if FOO" or "#if !FOO" must be used because "#ifdef FOO" is always true. (Options passed by $(call add_define,) are the cases.) For the latter, "#ifdef FOO" or "#ifndef FOO" should be used because checking the value of an undefined macro is strange. Here, IMAGE_BL* is handled by make_helpers/build_macro.mk like follows: $(eval IMAGE := IMAGE_BL$(call uppercase,$(3))) $(OBJ): $(2) @echo " CC $$<" $$(Q)$$(CC) $$(TF_CFLAGS) $$(CFLAGS) -D$(IMAGE) -c $$< -o $$@ This means, IMAGE_BL* is defined when building the corresponding image, but *undefined* for the other images. So, IMAGE_BL* belongs to the latter group where we should use #ifdef or #ifndef. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
- 14 Dec, 2016 1 commit
-
-
Yatharth Kochar authored
This patch enables TRUSTED_BOARD_BOOT (Authentication and FWU) support, for AArch64, when LOAD_IMAGE_V2 is enabled. This patch also enables LOAD_IMAGE_V2 for ARM platforms. Change-Id: I294a2eebce7a30b6784c80c9d4ac7752808ee3ad Signed-off-by: Yatharth Kochar <yatharth.kochar@arm.com>
-
- 07 Dec, 2016 1 commit
-
-
Soby Mathew authored
The capabilities exposed by the PSCI generic layer depends on the hooks populated by the platform in `plat_arm_psci_pm_ops`. Currently ARM Standard platforms statically define this structure. However, some platforms may want to modify the hooks at runtime before registering them with the generic layer. This patch introduces a new ARM platform layer API `plat_arm_psci_override_pm_ops` which allows the platform to probe the power controller and modify `plat_arm_psci_pm_ops` if required. Consequently, 'plat_arm_psci_pm_ops' is no longer qualified as `const` on ARM Standard platforms. Change-Id: I7dbb44b7bd36c20ec14ded5ee45a96816ca2ab9d Signed-off-by: Soby Mathew <soby.mathew@arm.com>
-
- 05 Dec, 2016 1 commit
-
-
Jeenu Viswambharan authored
There are many instances in ARM Trusted Firmware where control is transferred to functions from which return isn't expected. Such jumps are made using 'bl' instruction to provide the callee with the location from which it was jumped to. Additionally, debuggers infer the caller by examining where 'lr' register points to. If a 'bl' of the nature described above falls at the end of an assembly function, 'lr' will be left pointing to a location outside of the function range. This misleads the debugger back trace. This patch defines a 'no_ret' macro to be used when jumping to functions from which return isn't expected. The macro ensures to use 'bl' instruction for the jump, and also, for debug builds, places a 'nop' instruction immediately thereafter (unless instructed otherwise) so as to leave 'lr' pointing within the function range. Change-Id: Ib34c69fc09197cfd57bc06e147cc8252910e01b0 Co-authored-by: Douglas Raillard <douglas.raillard@arm.com> Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 21 Sep, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds changes in ARM platform code to use new version of image loading. Following are the major changes: -Refactor the signatures for bl31_early_platform_setup() and arm_bl31_early_platform_setup() function to use `void *` instead of `bl31_params_t *`. -Introduce `plat_arm_bl2_handle_scp_bl2()` to handle loading of SCP_BL2 image from BL2. -Remove usage of reserve_mem() function from `arm_bl1_early_platform_setup()` -Extract BL32 & BL33 entrypoint info, from the link list passed by BL2, in `arm_bl31_early_platform_setup()` -Provides weak definitions for following platform functions: plat_get_bl_image_load_info plat_get_next_bl_params plat_flush_next_bl_params bl2_plat_handle_post_image_load -Instantiates a descriptor array for ARM platforms describing image and entrypoint information for `SCP_BL2`, `BL31`, `BL32` and `BL33` images. All the above changes are conditionally compiled using the `LOAD_IMAGE_V2` flag. Change-Id: I5e88b9785a3df1a2b2bbbb37d85b8e353ca61049
-
- 15 Sep, 2016 1 commit
-
-
Jeenu Viswambharan authored
This patch implements CSS platform hook to support NODE_HW_STATE PSCI API. The platform hook queries SCP to obtain CSS power state. Power states returned by SCP are then converted to expected PSCI return codes. Juno's PSCI operation structure is modified to use the CSS implementation. Change-Id: I4a5edac0e5895dd77b51398cbd78f934831dafc0
-
- 19 Aug, 2016 1 commit
-
-
Sandrine Bailleux authored
This patch adds a WFI instruction in the default implementations of plat_error_handler() and plat_panic_handler(). This potentially reduces power consumption by allowing the hardware to enter a low-power state. The same change has been made to the FVP and Juno platform ports. Change-Id: Ia4e6e1e5bf1ed42efbba7d0ebbad7be8d5f9f173
-
- 25 Jul, 2016 1 commit
-
-
Antonio Nino Diaz authored
Compile option `ARM_BOARD_OPTIMISE_MMAP` has been renamed to `ARM_BOARD_OPTIMISE_MEM` because it now applies not only to defines related to the translation tables but to the image size as well. The defines `PLAT_ARM_MAX_BL1_RW_SIZE`, `PLAT_ARM_MAX_BL2_SIZE` and `PLAT_ARM_MAX_BL31_SIZE` have been moved to the file board_arm_def.h. This way, ARM platforms no longer have to set their own values if `ARM_BOARD_OPTIMISE_MEM=0` and they can specify optimized values otherwise. The common sizes have been set to the highest values used for any of the current build configurations. This is needed because in some build configurations some images are running out of space. This way there is a common set of values known to work for all of them and it can be optimized for each particular platform if needed. The space reserved for BL2 when `TRUSTED_BOARD_BOOT=0` has been increased. This is needed because when memory optimisations are disabled the values for Juno of `PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` are higher. If in this situation the code is compiled in debug mode and with "-O0", the code won't fit. Change-Id: I70a3d8d3a0b0cad1d6b602c01a7ea334776e718e
-
- 18 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch reworks type usage in generic code, drivers and ARM platform files to make it more portable. The major changes done with respect to type usage are as listed below: * Use uintptr_t for storing address instead of uint64_t or unsigned long. * Review usage of unsigned long as it can no longer be assumed to be 64 bit. * Use u_register_t for register values whose width varies depending on whether AArch64 or AArch32. * Use generic C types where-ever possible. In addition to the above changes, this patch also modifies format specifiers in print invocations so that they are AArch64/AArch32 agnostic. Only files related to upcoming feature development have been reworked. Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
-
- 16 Jun, 2016 1 commit
-
-
Soby Mathew authored
This patch enables optional PSCI functions `PSCI_STAT_COUNT` and `PSCI_STAT_RESIDENCY` for ARM standard platforms. The optional platform API 'translate_power_state_by_mpidr()' is implemented for the Juno platform. 'validate_power_state()' on Juno downgrades PSCI CPU_SUSPEND requests for the system power level to the cluster power level. Hence, it is not suitable for validating the 'power_state' parameter passed in a PSCI_STAT_COUNT/RESIDENCY call. Change-Id: I9548322676fa468d22912392f2325c2a9f96e4d2
-
- 14 Apr, 2016 1 commit
-
-
Gerald Lejeune authored
It is up to the platform to implement the new plat_crash_print_regs macro to report all relevant platform registers helpful for troubleshooting. plat_crash_print_regs merges or calls previously defined plat_print_gic_regs and plat_print_interconnect_regs macros for each existing platforms. NOTE: THIS COMMIT REQUIRES ALL PLATFORMS THAT ENABLE THE `CRASH_REPORTING` BUILD FLAG TO MIGRATE TO USE THE NEW `plat_crash_print_regs()` MACRO. BY DEFAULT, `CRASH_REPORTING` IS ENABLED IN DEBUG BUILDS FOR ALL PLATFORMS. Fixes: arm-software/tf-issues#373 Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
-
- 31 Mar, 2016 1 commit
-
-
Soby Mathew authored
This patch migrates ARM Standard platforms to the refactored TZC driver. Change-Id: I2a2f60b645f73e14d8f416740c4551cec87cb1fb
-
- 14 Mar, 2016 1 commit
-
-
Antonio Nino Diaz authored
Added a new platform porting function plat_panic_handler, to allow platforms to handle unexpected error situations. It must be implemented in assembly as it may be called before the C environment is initialized. A default implementation is provided, which simply spins. Corrected all dead loops in generic code to call this function instead. This includes the dead loop that occurs at the end of the call to panic(). All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have been removed. Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
-
- 22 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
`board_arm_def.h` contains multiple definitions of `PLAT_ARM_MMAP_ENTRIES` and `MAX_XLAT_TABLES` that are optimised for memory usage depending upon the chosen build configuration. To ease maintenance of these constants, this patch replaces their multiple definitions with a single set of definitions that will work on all ARM platforms. Platforms can override the defaults with optimal values by enabling the `ARM_BOARD_OPTIMISE_MMAP` build option. An example has been provided in the Juno ADP port. Additionally, `PLAT_ARM_MMAP_ENTRIES` is increased by one to accomodate future ARM platforms. Change-Id: I5ba6490fdd1e118cc9cc2d988ad7e9c38492b6f0
-
- 19 Feb, 2016 1 commit
-
-
Soby Mathew authored
The common topology description helper funtions and macros for ARM Standard platforms assumed a dual cluster system. This is not flexible enough to scale to multi cluster platforms. This patch does the following changes for more flexibility in defining topology: 1. The `plat_get_power_domain_tree_desc()` definition is moved from `arm_topology.c` to platform specific files, that is `fvp_topology.c` and `juno_topology.c`. Similarly the common definition of the porting macro `PLATFORM_CORE_COUNT` in `arm_def.h` is moved to platform specific `platform_def.h` header. 2. The ARM common layer porting macros which were dual cluster specific are now removed and a new macro PLAT_ARM_CLUSTER_COUNT is introduced which must be defined by each ARM standard platform. 3. A new mandatory ARM common layer porting API `plat_arm_get_cluster_core_count()` is introduced to enable the common implementation of `arm_check_mpidr()` to validate MPIDR. 4. For the FVP platforms, a new build option `FVP_NUM_CLUSTERS` has been introduced which allows the user to specify the cluster count to be used to build the topology tree within Trusted Firmare. This enables Trusted Firmware to be built for multi cluster FVP models. Change-Id: Ie7a2e38e5661fe2fdb2c8fdf5641d2b2614c2b6b
-
- 16 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
ARM Trusted Firmware supports 2 different interconnect peripheral drivers: CCI and CCN. ARM platforms are implemented using either of the interconnect peripherals. This patch adds a layer of abstraction to help ARM platform ports to choose the right interconnect driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been implemented to initialise an interconnect and for entering/exiting a cluster from coherency. These functions are prefixed as "plat_arm_interconnect_". Weak definitions of these functions have been provided for each type of driver. 2.`plat_print_interconnect_regs` macro used for printing CCI registers is moved from a common arm_macros.S to cci_macros.S. 3. The `ARM_CONFIG_HAS_CCI` flag used in `arm_config_flags` structure is renamed to `ARM_CONFIG_HAS_INTERCONNECT`. Change-Id: I02f31184fbf79b784175892d5ce1161b65a0066c
-
- 15 Feb, 2016 2 commits
-
-
Vikram Kanigiri authored
Prior to this patch, it was assumed that on all ARM platforms the bare minimal security setup required is to program TrustZone protection. This would always be done by programming the TZC-400 which was assumed to be present in all ARM platforms. The weak definition of platform_arm_security_setup() in plat/arm/common/arm_security.c reflected these assumptions. In reality, each ARM platform either decides at runtime whether TrustZone protection needs to be programmed (e.g. FVPs) or performs some security setup in addition to programming TrustZone protection (e.g. NIC setup on Juno). As a result, the weak definition of plat_arm_security_setup() is always overridden. When a platform needs to program TrustZone protection and implements the TZC-400 peripheral, it uses the arm_tzc_setup() function to do so. It is also possible to program TrustZone protection through other peripherals that include a TrustZone controller e.g. DMC-500. The programmer's interface is slightly different across these various peripherals. In order to satisfy the above requirements, this patch makes the following changes to the way security setup is done on ARM platforms. 1. arm_security.c retains the definition of arm_tzc_setup() and has been renamed to arm_tzc400.c. This is to reflect the reliance on the TZC-400 peripheral to perform TrustZone programming. The new file is not automatically included in all platform ports through arm_common.mk. Each platform must include it explicitly in a platform specific makefile if needed. This approach enables introduction of similar library code to program TrustZone protection using a different peripheral. This code would be used by the subset of ARM platforms that implement this peripheral. 2. Due to #1 above, existing platforms which implements the TZC-400 have been updated to include the necessary files for both BL2, BL2U and BL31 images. Change-Id: I513c58f7a19fff2e9e9c3b95721592095bcb2735
-
Vikram Kanigiri authored
Current code assumes `SCP_COM_SHARED_MEM_BASE` as the base address for BOM/SCPI protocol between AP<->SCP on all CSS platforms. To cater for future ARM platforms this is made platform specific. Similarly, the bit shifts of `SCP_BOOT_CONFIG_ADDR` are also made platform specific. Change-Id: Ie8866c167abf0229a37b3c72576917f085c142e8
-
- 11 Feb, 2016 1 commit
-
-
Vikram Kanigiri authored
Each ARM Compute Subsystem based platform implements a System Security Control (SSC) Registers Unit. The SSC_VERSION register inside it carries information to identify the platform. This enables ARM Trusted Firmware to compile in support for multiple ARM platforms and choose one at runtime. This patch adds macros to enable access to this register. Each platform is expected to export its PART_NUMBER separately. Additionally, it also adds juno part number. Change-Id: I2b1d5f5b65a9c7b76c6f64480cc7cf0aef019422
-