- 09 Dec, 2015 2 commits
-
-
Achin Gupta authored
Suport for ARM GIC v2.0 and v3.0 drivers has been reworked to create three separate drivers instead of providing a single driver that can work on both versions of the GIC architecture. These drivers correspond to the following software use cases: 1. A GICv2 only driver that can run only on ARM GIC v2.0 implementations e.g. GIC-400 2. A GICv3 only driver that can run only on ARM GIC v3.0 implementations e.g. GIC-500 in a mode where all interrupt regimes use GICv3 features 3. A deprecated GICv3 driver that operates in legacy mode. This driver can operate only in the GICv2 mode in the secure world. On a GICv3 system, this driver allows normal world to run in either GICv3 mode (asymmetric mode) or in the GICv2 mode. Both modes of operation are deprecated on GICv3 systems. ARM platforms implement both versions of the GIC architecture. This patch adds a layer of abstraction to help ARM platform ports chose the right GIC driver and corresponding platform support. This is as described below: 1. A set of ARM common functions have been introduced to initialise the GIC and the driver during cold and warm boot. These functions are prefixed as "plat_arm_gic_". Weak definitions of these functions have been provided for each type of driver. 2. Each platform includes the sources that implement the right functions directly into the its makefile. The FVP can be instantiated with different versions of the GIC architecture. It uses the FVP_USE_GIC_DRIVER build option to specify which of the three drivers should be included in the build. 3. A list of secure interrupts has to be provided to initialise each of the three GIC drivers. For GIC v3.0 the interrupt ids have to be further categorised as Group 0 and Group 1 Secure interrupts. For GIC v2.0, the two types are merged and treated as Group 0 interrupts. The two lists of interrupts are exported from the platform_def.h. The lists are constructed by adding a list of board specific interrupt ids to a list of ids common to all ARM platforms and Compute sub-systems. This patch also makes some fields of `arm_config` data structure in FVP redundant and these unused fields are removed. Change-Id: Ibc8c087be7a8a6b041b78c2c3bd0c648cd2035d8
-
Soby Mathew authored
This patch adds platform helpers for the new GICv2 and GICv3 drivers in plat_gicv2.c and plat_gicv3.c. The platforms can include the appropriate file in their build according to the GIC driver to be used. The existing plat_gic.c is only meant for the legacy GIC driver. In the case of ARM platforms, the major changes are as follows: 1. The crash reporting helper macro `arm_print_gic_regs` that prints the GIC CPU interface register values has been modified to detect the type of CPU interface being used (System register or memory mappped interface) before using the right interface to print the registers. 2. The power management helper function that is called after a core is powered up has been further refactored. This is to highlight that the per-cpu distributor interface should be initialised only when the core was originally powered down using the CPU_OFF PSCI API and not when the CPU_SUSPEND PSCI API was used. 3. In the case of CSS platforms, the system power domain restore helper `arm_system_pwr_domain_resume()` is now only invoked in the `suspend_finish` handler as the system power domain is always expected to be initialized when the `on_finish` handler is invoked. Change-Id: I7fc27d61fc6c2a60cea2436b676c5737d0257df6
-
- 04 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch fixes several issues with the SP804 delay timer on FVP: * By default, the SP804 dual timer on FVP runs at 32 KHz. In order to run the timer at 35 MHz (as specified in the FVP user manual) the Overwrite bit in the SP810 control register must be set. * The CLKMULT and CLKDIV definitions are mixed up: delta(us) = delta(ticks) * T(us) = delta(ticks) / f(MHz) From the delay function: delta_us = (delta * ops->clk_mult) / ops->clk_div; Matching both expressions: 1 / f(MHz) = ops->clk_mult / ops->clk_div And consequently: f(MHz) = ops->clk_div / ops->clk_mult Which, for a 35 MHz timer, translates to: ops->clk_div = 35 ops->clk_mult = 1 * The comment in the delay timer header file has been corrected: The ratio of the multiplier and the divider is the clock period in microseconds, not the frequency. Change-Id: Iffd5ce0a5a28fa47c0720c0336d81b678ff8fdf1
-
- 02 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch adds watchdog support on ARM platforms (FVP and Juno). A secure instance of SP805 is used as Trusted Watchdog. It is entirely managed in BL1, being enabled in the early platform setup hook and disabled in the exit hook. By default, the watchdog is enabled in every build (even when TBB is disabled). A new ARM platform specific build option `ARM_DISABLE_TRUSTED_WDOG` has been introduced to allow the user to disable the watchdog at build time. This feature may be used for testing or debugging purposes. Specific error handlers for Juno and FVP are also provided in this patch. These handlers will be called after an image load or authentication error. On FVP, the Table of Contents (ToC) in the FIP is erased. On Juno, the corresponding error code is stored in the V2M Non-Volatile flags register. In both cases, the CPU spins until a watchdog reset is generated after 256 seconds (as specified in the TBBR document). Change-Id: I9ca11dcb0fe15af5dbc5407ab3cf05add962f4b4
-
- 27 Nov, 2015 1 commit
-
-
Juan Castillo authored
FVP and Juno platforms include a NOR flash memory to store and load the FIP, the kernel or a ramdisk. This NOR flash is arranged as 2 x 16 bit flash devices and can be programmed using CFI standard commands. This patch provides a basic API to write single 32 bit words of data into the NOR flash. Functions to lock/unlock blocks against erase or write operations are also provided. Change-Id: I1da7ad3105b1ea409c976adc863954787cbd90d2
-
- 26 Nov, 2015 3 commits
-
-
Sandrine Bailleux authored
Normally, in the FVP port, secondary CPUs are immediately powered down if they are powered on at reset. However, when booting an EL3 payload, we need to keep them powered on as the requirement is for all CPUs to enter the EL3 payload image. This patch puts them in a holding pen instead of powering them off. Change-Id: I6526a88b907a0ddb820bead72f1d350a99b1692c
-
Sandrine Bailleux authored
By default, only the primary CPU is powered on by SCP on CSS platforms. Secondary CPUs are then powered on later using PSCI calls. However, it is possible to power on more than one CPU at boot time using platform specific settings. In this case, several CPUs will enter the Trusted Firmware and execute the cold boot path code. This is currently not supported and secondary CPUs will panic. This patch preserves this behaviour in the normal boot flow. However, when booting an EL3 payload, secondary CPUs are now held in a pen until their mailbox is populated, at which point they jump to this address. Note that, since all CPUs share the same mailbox, they will all be released from their holding pen at the same time and the EL3 payload is responsible to arbitrate execution between CPUs if required. Change-Id: I83737e0c9f15ca5e73afbed2e9c761bc580735b9
-
Sandrine Bailleux authored
This patch adds support for booting EL3 payloads on CSS platforms, for example Juno. In this scenario, the Trusted Firmware follows its normal boot flow up to the point where it would normally pass control to the BL31 image. At this point, it jumps to the EL3 payload entry point address instead. Before handing over to the EL3 payload, the data SCP writes for AP at the beginning of the Trusted SRAM is restored, i.e. we zero the first 128 bytes and restore the SCP Boot configuration. The latter is saved before transferring the BL30 image to SCP and is restored just after the transfer (in BL2). The goal is to make it appear that the EL3 payload is the first piece of software to run on the target. The BL31 entrypoint info structure is updated to make the primary CPU jump to the EL3 payload instead of the BL31 image. The mailbox is populated with the EL3 payload entrypoint address, which releases the secondary CPUs out of their holding pen (if the SCP has powered them on). The arm_program_trusted_mailbox() function has been exported for this purpose. The TZC-400 configuration in BL2 is simplified: it grants secure access only to the whole DRAM. Other security initialization is unchanged. This alternative boot flow is disabled by default. A new build option EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3 payload's entry point address. The build system has been modified such that BL31 and BL33 are not compiled and/or not put in the FIP in this case, as those images are not used in this boot flow. Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
-
- 19 Nov, 2015 2 commits
-
-
Sandrine Bailleux authored
The default reset values for the L2 Data & Tag RAM latencies on the Cortex-A72 on Juno R2 are not suitable. This patch modifies the Juno platform reset handler to configure the right settings on Juno R2. Change-Id: I20953de7ba0619324a389e0b7bbf951b64057db8
-
Sandrine Bailleux authored
This patch splits the Juno reset handler in 4 distinct pieces: - Detection of the board revision; - Juno R0 specific handler; - Juno R1 specific handler; - Juno R2 specific handler. Depending on the board revision, the appropriate handler is called. This makes the code easier to understand and maintain. This patch is mainly cosmetic. The only functional change introduced is that the Juno platform reset handler will now spin infinitely if the board revision is not recognised. Previously, it would have assumed that it was running on Juno R1 in this case. Change-Id: I54ed77c4665085ead9d1573316c9c884d7d3ffa0
-
- 13 Nov, 2015 1 commit
-
-
Juan Castillo authored
BL2 is responsible for loading BL32 and passing a pointer to the BL32 entrypoint info to BL31 in the BL31 parameters. If no BL32 image is loaded, a NULL pointer is passed. The platform is responsible for accessing BL31 parameters and extracting the corresponding BL32 EP info. In ARM platforms, arm_bl31_early_platform_setup() dereferences the pointer to the BL32 EP info without checking first if the pointer is NULL. This will cause an exception if a BL32 entrypoint has not been populated by BL2. FVP and Juno are not affected because they always define BL32_BASE, irrespective of whether a BL32 image is included in the FIP or not. This patches fixes the issue by checking the BL32 ep_info pointer before trying to access the data. If `RESET_TO_BL31` is enabled, the BL32 entrypoint is not populated if BL32_BASE is not defined. NOTE: Maintainers of partner platforms should check for this issue in their ports. Fixes ARM-software/tf-issues#320 Change-Id: I31456155503f2765766e8b7cd30ab4a40958fb96
-
- 04 Nov, 2015 1 commit
-
-
Brendan Jackman authored
Cortex-A72 library support is now compiled into the Juno platform port to go with the existing A53/A57 support. This enables a single set of Juno TF binaries to run on Juno R0, R1 and R2 boards. Change-Id: I4a601dc4f671e98bdb19d98bbb66f02f0d8b7fc7
-
- 02 Nov, 2015 1 commit
-
-
Juan Castillo authored
Patch 7e26fe1f deprecates IO specific return definitions in favour of standard errno codes. This patch removes those definitions and its usage from the IO framework, IO drivers and IO platform layer. Following this patch, standard errno codes must be used when checking the return value of an IO function. Change-Id: Id6e0e9d0a7daf15a81ec598cf74de83d5768650f
-
- 30 Oct, 2015 2 commits
-
-
Soby Mathew authored
This patch adds the capability to power down at system power domain level on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers are modified to add support for power management operations at system power domain level. A new helper for populating `get_sys_suspend_power_state` handler in plat_psci_ops is defined. On entering the system suspend state, the SCP powers down the SYSTOP power domain on the SoC and puts the memory into retention mode. On wakeup from the power down, the system components on the CSS will be reinitialized by the platform layer and the PSCI client is responsible for restoring the context of these system components. According to PSCI Specification, interrupts targeted to cores in PSCI CPU SUSPEND should be able to resume it. On Juno, when the system power domain is suspended, the GIC is also powered down. The SCP resumes the final core to be suspend when an external wake-up event is received. But the other cores cannot be woken up by a targeted interrupt, because GIC doesn't forward these interrupts to the SCP. Due to this hardware limitation, we down-grade PSCI CPU SUSPEND requests targeted to the system power domain level to cluster power domain level in `juno_validate_power_state()` and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c. A system power domain resume helper `arm_system_pwr_domain_resume()` is defined for ARM standard platforms which resumes/re-initializes the system components on wakeup from system suspend. The security setup also needs to be done on resume from system suspend, which means `plat_arm_security_setup()` must now be included in the BL3-1 image in addition to previous BL images if system suspend need to be supported. Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
-
Soby Mathew authored
This patch implements the necessary topology changes for supporting system power domain on CSS platforms. The definition of PLAT_MAX_PWR_LVL and PLAT_NUM_PWR_DOMAINS macros are removed from arm_def.h and are made platform specific. In addition, the `arm_power_domain_tree_desc[]` and `arm_pm_idle_states[]` are modified to support the system power domain at level 2. With this patch, even though the power management operations involving the system power domain will not return any error, the platform layer will silently ignore any operations to the power domain. The actual power management support for the system power domain will be added later. Change-Id: I791867eded5156754fe898f9cdc6bba361e5a379
-
- 27 Oct, 2015 2 commits
-
-
Juan Castillo authored
This patch is a complete rework of the main Makefile. Functionality remains the same but the code has been reorganized in sections in order to improve readability and facilitate adding future extensions. A new file 'build_macros.mk' has been created and will contain common definitions (variables, macros, etc) that may be used from the main Makefile and other platform specific makefiles. A new macro 'FIP_ADD_IMG' has been introduced and it will allow the platform to specify binary images and the necessary checks for a successful build. Platforms that require a BL30 image no longer need to specify the NEED_BL30 option. The main Makefile is now completely unaware of additional images not built as part of Trusted Firmware, like BL30. It is the platform responsibility to specify images using the macro 'FIP_ADD_IMG'. Juno uses this macro to include the BL30 image in the build. BL33 image is specified in the main Makefile to preserve backward compatibility with the NEED_BL33 option. Otherwise, platform ports that rely on the definition of NEED_BL33 might break. All Trusted Board Boot related definitions have been moved to a separate file 'tbbr_tools.mk'. The main Makefile will include this file unless the platform indicates otherwise by setting the variable 'INCLUDE_TBBR_MK := 0' in the corresponding platform.mk file. This will keep backward compatibility but ideally each platform should include the corresponding TBB .mk file in platform.mk. Change-Id: I35e7bc9930d38132412e950e20aa2a01e2b26801
-
David Wang authored
Currently all ARM CSS platforms which include css_helpers.S use the same strong definition of `plat_arm_calc_core_pos`. This patch allows these CSS platforms to define their own strong definition of this function. * Replace the strong definition of `plat_arm_calc_core_pos` in css_helpers.S with a utility function `css_calc_core_pos_swap_cluster` does the same thing (swaps cluster IDs). ARM CSS platforms may choose to use this function or not. * Add a Juno strong definition of `plat_arm_calc_core_pos`, which uses `css_calc_core_pos_swap_cluster`. Change-Id: Ib5385ed10e44adf6cd1398a93c25973eb3506d9d
-
- 20 Oct, 2015 1 commit
-
-
Soby Mathew authored
This patch does the following reorganization to psci power management (PM) handler setup for ARM standard platform ports : 1. The mailbox programming required during `plat_setup_psci_ops()` is identical for all ARM platforms. Hence the implementation of this API is now moved to the common `arm_pm.c` file. Each ARM platform now must define the PLAT_ARM_TRUSTED_MAILBOX_BASE macro, which in current platforms is the same as ARM_SHARED_RAM_BASE. 2. The PSCI PM handler callback structure, `plat_psci_ops`, must now be exported via `plat_arm_psci_pm_ops`. This allows the common implementation of `plat_setup_psci_ops()` to return a platform specific `plat_psci_ops`. In the case of CSS platforms, a default weak implementation of the same is provided in `css_pm.c` which can be overridden by each CSS platform. 3. For CSS platforms, the PSCI PM handlers defined in `css_pm.c` are now made library functions and a new header file `css_pm.h` is added to export these generic PM handlers. This allows the platform to reuse the adequate CSS PM handlers and redefine others which need to be customized when overriding the default `plat_arm_psci_pm_ops` in `css_pm.c`. Change-Id: I277910f609e023ee5d5ff0129a80ecfce4356ede
-
- 19 Oct, 2015 1 commit
-
-
Sandrine Bailleux authored
This patch fixes the relative path to the 'bl1_private.h' header file included from 'arm_bl1_setup.c'. Note that, although the path was incorrect, it wasn't causing a compilation error because the header file still got included through an alternative include search path. Change-Id: I28e4f3dbe50e3550ca6cad186502c88a9fb5e260
-
- 14 Sep, 2015 1 commit
-
-
Achin Gupta authored
This patch adds a device driver which can be used to program the following aspects of ARM CCN IP: 1. Specify the mapping between ACE/ACELite/ACELite+DVM/CHI master interfaces and Request nodes. 2. Add and remove master interfaces from the snoop and dvm domains. 3. Place the L3 cache in a given power state. 4. Configuring system adress map and enabling 3 SN striping mode of memory controller operation. Change-Id: I0f665c6a306938e5b66f6a92f8549b529aa8f325
-
- 11 Sep, 2015 3 commits
-
-
Vikram Kanigiri authored
Currently, on ARM platforms(ex. Juno) non-secure access to specific peripheral regions, config registers which are inside and outside CSS is done in the soc_css_security_setup(). This patch separates the CSS security setup from the SOC security setup in the css_security_setup(). The CSS security setup involves programming of the internal NIC to provide access to regions inside the CSS. This is needed only in Juno, hence Juno implements it in its board files as css_init_nic400(). Change-Id: I95a1fb9f13f9b18fa8e915eb4ae2f15264f1b060
-
Vikram Kanigiri authored
On Juno and FVP platforms, the Non-Secure System timer corresponds to frame 1. However, this is a platform-specific decision and it shouldn't be hard-coded. Hence, this patch introduces PLAT_ARM_NSTIMER_FRAME_ID which should be used by all ARM platforms to specify the correct non-secure timer frame. Change-Id: I6c3a905d7d89200a2f58c20ce5d1e1d166832bba
-
Vikram Kanigiri authored
This patch replaces the `ARM_TZC_BASE` constant with `PLAT_ARM_TZC_BASE` to support different TrustZone Controller base addresses across ARM platforms. Change-Id: Ie4e1c7600fd7a5875323c7cc35e067de0c6ef6dd
-
- 01 Sep, 2015 1 commit
-
-
Vikram Kanigiri authored
ARM TF configures all interrupts as non-secure except those which are present in irq_sec_array. This patch updates the irq_sec_array with the missing secure interrupts for ARM platforms. It also updates the documentation to be inline with the latest implementation. Fixes ARM-software/tf-issues#312 Change-Id: I39956c56a319086e3929d1fa89030b4ec4b01fcc
-
- 13 Aug, 2015 6 commits
-
-
Soby Mathew authored
This patch adds the necessary documentation updates to porting_guide.md for the changes in the platform interface mandated as a result of the new PSCI Topology and power state management frameworks. It also adds a new document `platform-migration-guide.md` to aid the migration of existing platform ports to the new API. The patch fixes the implementation and callers of plat_is_my_cpu_primary() to use w0 as the return parameter as implied by the function signature rather than x0 which was used previously. Change-Id: Ic11e73019188c8ba2bd64c47e1729ff5acdcdd5b
-
Soby Mathew authored
This patch implements the platform power managment handler to verify non secure entrypoint for ARM platforms. The handler ensures that the entry point specified by the normal world during CPU_SUSPEND, CPU_ON or SYSTEM_SUSPEND PSCI API is a valid address within the non secure DRAM. Change-Id: I4795452df99f67a24682b22f0e0967175c1de429
-
Sandrine Bailleux authored
Now that the FVP mailbox is no longer zeroed, the function platform_mem_init() does nothing both on FVP and on Juno. Therefore, this patch pools it as the default implementation on ARM platforms. Change-Id: I007220f4531f15e8b602c3368a1129a5e3a38d91
-
Sandrine Bailleux authored
Since there is a unique warm reset entry point, the FVP and Juno port can use a single mailbox instead of maintaining one per core. The mailbox gets programmed only once when plat_setup_psci_ops() is invoked during PSCI initialization. This means mailbox is not zeroed out during wakeup. Change-Id: Ieba032a90b43650f970f197340ebb0ce5548d432
-
Soby Mathew authored
This patch adds support to the Juno and FVP ports for composite power states with both the original and extended state-id power-state formats. Both the platform ports use the recommended state-id encoding as specified in Section 6.5 of the PSCI specification (ARM DEN 0022C). The platform build flag ARM_RECOM_STATE_ID_ENC is used to include this support. By default, to maintain backwards compatibility, the original power state parameter format is used and the state-id field is expected to be zero. Change-Id: Ie721b961957eaecaca5bf417a30952fe0627ef10
-
Soby Mathew authored
This patch migrates ARM reference platforms, Juno and FVP, to the new platform API mandated by the new PSCI power domain topology and composite power state frameworks. The platform specific makefiles now exports the build flag ENABLE_PLAT_COMPAT=0 to disable the platform compatibility layer. Change-Id: I3040ed7cce446fc66facaee9c67cb54a8cd7ca29
-
- 25 Jun, 2015 5 commits
-
-
Juan Castillo authored
The authentication framework deprecates plat_match_rotpk() in favour of plat_get_rotpk_info(). This patch removes plat_match_rotpk() from the platform port. Change-Id: I2250463923d3ef15496f9c39678b01ee4b33883b
-
Juan Castillo authored
This patch modifies the Trusted Board Boot implementation to use the new authentication framework, making use of the authentication module, the cryto module and the image parser module to authenticate the images in the Chain of Trust. A new function 'load_auth_image()' has been implemented. When TBB is enabled, this function will call the authentication module to authenticate parent images following the CoT up to the root of trust to finally load and authenticate the requested image. The platform is responsible for picking up the right makefiles to build the corresponding cryptographic and image parser libraries. ARM platforms use the mbedTLS based libraries. The platform may also specify what key algorithm should be used to sign the certificates. This is done by declaring the 'KEY_ALG' variable in the platform makefile. FVP and Juno use ECDSA keys. On ARM platforms, BL2 and BL1-RW regions have been increased 4KB each to accommodate the ECDSA code. REMOVED BUILD OPTIONS: * 'AUTH_MOD' Change-Id: I47d436589fc213a39edf5f5297bbd955f15ae867
-
Juan Castillo authored
This patch adds a CoT based on the Trusted Board Boot Requirements document*. The CoT consists of an array of authentication image descriptors indexed by the image identifiers. A new header file with TBBR image identifiers has been added. Platforms that use the TBBR (i.e. ARM platforms) may reuse these definitions as part of their platform porting. PLATFORM PORT - IMPORTANT: Default image IDs have been removed from the platform common definitions file (common_def.h). As a consequence, platforms that used those common definitons must now either include the IDs provided by the TBBR header file or define their own IDs. *The NVCounter authentication method has not been implemented yet. Change-Id: I7c4d591863ef53bb0cd4ce6c52a60b06fa0102d5
-
Juan Castillo authored
This patch extends the platform port by adding an API that returns either the Root of Trust public key (ROTPK) or its hash. This is usually stored in ROM or eFUSE memory. The ROTPK returned must be encoded in DER format according to the following ASN.1 structure: SubjectPublicKeyInfo ::= SEQUENCE { algorithm AlgorithmIdentifier, subjectPublicKey BIT STRING } In case the platform returns a hash of the key: DigestInfo ::= SEQUENCE { digestAlgorithm AlgorithmIdentifier, keyDigest OCTET STRING } An implementation for ARM development platforms is provided in this patch. When TBB is enabled, the ROTPK hash location must be specified using the build option 'ARM_ROTPK_LOCATION'. Available options are: - 'regs' : return the ROTPK hash stored in the Trusted root-key storage registers. - 'devel_rsa' : return a ROTPK hash embedded in the BL1 and BL2 binaries. This hash has been obtained from the development RSA public key located in 'plat/arm/board/common/rotpk'. On FVP, the number of MMU tables has been increased to map and access the ROTPK registers. A new file 'board_common.mk' has been added to improve code sharing in the ARM develelopment platforms. Change-Id: Ib25862e5507d1438da10773e62bd338da8f360bf
-
Juan Castillo authored
The Trusted firmware code identifies BL images by name. The platform port defines a name for each image e.g. the IO framework uses this mechanism in the platform function plat_get_image_source(). For a given image name, it returns the handle to the image file which involves comparing images names. In addition, if the image is packaged in a FIP, a name comparison is required to find the UUID for the image. This method is not optimal. This patch changes the interface between the generic and platform code with regard to identifying images. The platform port must now allocate a unique number (ID) for every image. The generic code will use the image ID instead of the name to access its attributes. As a result, the plat_get_image_source() function now takes an image ID as an input parameter. The organisation of data structures within the IO framework has been rationalised to use an image ID as an index into an array which contains attributes of the image such as UUID and name. This prevents the name comparisons. A new type 'io_uuid_spec_t' has been introduced in the IO framework to specify images identified by UUID (i.e. when the image is contained in a FIP file). There is no longer need to maintain a look-up table [iname_name --> uuid] in the io_fip driver code. Because image names are no longer mandatory in the platform port, the debug messages in the generic code will show the image identifier instead of the file name. The platforms that support semihosting to load images (i.e. FVP) must provide the file names as definitions private to the platform. The ARM platform ports and documentation have been updated accordingly. All ARM platforms reuse the image IDs defined in the platform common code. These IDs will be used to access other attributes of an image in subsequent patches. IMPORTANT: applying this patch breaks compatibility for platforms that use TF BL1 or BL2 images or the image loading code. The platform port must be updated to match the new interface. Change-Id: I9c1b04cb1a0684c6ee65dee66146dd6731751ea5
-
- 18 Jun, 2015 1 commit
-
-
Ryan Harkin authored
Add SP804 delay timer support to the FVP BSP. This commit simply provides the 3 constants needed by the SP804 delay timer driver and calls sp804_timer_init() in bl2_platform_setup(). The BSP does not currently use the delay timer functions. Note that the FVP SP804 is a normal world accessible peripheral and should not be used by the secure world after transition to the normal world. Change-Id: I5f91d2ac9eb336fd81943b3bb388860dfb5f2b39 Co-authored-by: Dan Handley <dan.handley@arm.com>
-
- 09 Jun, 2015 1 commit
-
-
Sandrine Bailleux authored
For CSS based platforms, the constants MHU_SECURE_BASE and MHU_SECURE_SIZE used to define the extents of the Trusted Mailboxes. As such, they were misnamed because the mailboxes are completely unrelated to the MHU hardware. This patch removes the MHU_SECURE_BASE and MHU_SECURE_SIZE #defines. The address of the Trusted Mailboxes is now relative to the base of the Trusted SRAM. This patch also introduces a new constant, SCP_COM_SHARED_MEM_BASE, which is the address of the first memory region used for communication between AP and SCP. This is used by the BOM and SCPI protocols. Change-Id: Ib200f057b19816bf05e834d111271c3ea777291f
-
- 04 Jun, 2015 1 commit
-
-
Sandrine Bailleux authored
This patch removes the FIRST_RESET_HANDLER_CALL build flag and its use in ARM development platforms. If a different reset handling behavior is required between the first and subsequent invocations of the reset handling code, this should be detected at runtime. On Juno, the platform reset handler is now always compiled in. This means it is now executed twice on the cold boot path, first in BL1 then in BL3-1, and it has the same behavior in both cases. It is also executed twice on the warm boot path, first in BL1 then in the PSCI entrypoint code. Also update the documentation to reflect this change. NOTE: THIS PATCH MAY FORCE PLATFORM PORTS THAT USE THE FIRST_RESET_HANDLER_CALL BUILD OPTION TO FIX THEIR RESET HANDLER. Change-Id: Ie5c17dbbd0932f5fa3b446efc6e590798a5beae2
-
- 03 Jun, 2015 1 commit
-
-
Soby Mathew authored
This patch fixes the incorrect bit width used to extract the wakeup reason from PSYSR in platform_get_entrypoint() function. This defect did not have any observed regression. Change-Id: I42652dbffc99f5bf50cc86a5878f28d730720d9a
-
- 01 Jun, 2015 1 commit
-
-
Sandrine Bailleux authored
On ARM standard platforms, snoop and DVM requests used to be enabled for the primary CPU's cluster only in the first EL3 bootloader. In other words, if the platform reset into BL1 then CCI coherency would be enabled by BL1 only, and not by BL3-1 again. However, this doesn't cater for platforms that use BL3-1 along with a non-TF ROM bootloader that doesn't enable snoop and DVM requests. In this case, CCI coherency is never enabled. This patch modifies the function bl31_early_platform_setup() on ARM standard platforms so that it always enables snoop and DVM requests regardless of whether earlier bootloader stages have already done it. There is no harm in executing this code twice. ARM Trusted Firmware Design document updated accordingly. Change-Id: Idf1bdeb24d2e1947adfbb76a509f10beef224e1c
-