key.go 6.99 KB
Newer Older
Juan Batiz-Benet's avatar
Juan Batiz-Benet committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// package crypto implements various cryptographic utilities used by ipfs.
// This includes a Public and Private key interface and an RSA key implementation
// that satisfies it.
package crypto

import (
	"bytes"
	"encoding/base64"
	"errors"
	"fmt"
	"io"

	"crypto/elliptic"
	"crypto/hmac"
	"crypto/rand"
	"crypto/rsa"
	"crypto/sha1"
	"crypto/sha256"
	"crypto/sha512"
	"hash"

22
	proto "github.com/ipfs/go-ipfs/Godeps/_workspace/src/code.google.com/p/goprotobuf/proto"
Juan Batiz-Benet's avatar
Juan Batiz-Benet committed
23

24
25
	pb "github.com/ipfs/go-ipfs/p2p/crypto/internal/pb"
	u "github.com/ipfs/go-ipfs/util"
Juan Batiz-Benet's avatar
Juan Batiz-Benet committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
)

var log = u.Logger("crypto")

var ErrBadKeyType = errors.New("invalid or unsupported key type")

const (
	RSA = iota
)

// Key represents a crypto key that can be compared to another key
type Key interface {
	// Bytes returns a serialized, storeable representation of this key
	Bytes() ([]byte, error)

	// Hash returns the hash of this key
	Hash() ([]byte, error)

	// Equals checks whether two PubKeys are the same
	Equals(Key) bool
}

// PrivKey represents a private key that can be used to generate a public key,
// sign data, and decrypt data that was encrypted with a public key
type PrivKey interface {
	Key

	// Cryptographically sign the given bytes
	Sign([]byte) ([]byte, error)

	// Return a public key paired with this private key
	GetPublic() PubKey

	// Generate a secret string of bytes
	GenSecret() []byte

	Decrypt(b []byte) ([]byte, error)
}

type PubKey interface {
	Key

	// Verify that 'sig' is the signed hash of 'data'
	Verify(data []byte, sig []byte) (bool, error)

	// Encrypt data in a way that can be decrypted by a paired private key
	Encrypt(data []byte) ([]byte, error)
}

// Given a public key, generates the shared key.
type GenSharedKey func([]byte) ([]byte, error)

func GenerateKeyPair(typ, bits int) (PrivKey, PubKey, error) {
	return GenerateKeyPairWithReader(typ, bits, rand.Reader)
}

// Generates a keypair of the given type and bitsize
func GenerateKeyPairWithReader(typ, bits int, src io.Reader) (PrivKey, PubKey, error) {
	switch typ {
	case RSA:
		priv, err := rsa.GenerateKey(src, bits)
		if err != nil {
			return nil, nil, err
		}
		pk := &priv.PublicKey
		return &RsaPrivateKey{sk: priv}, &RsaPublicKey{pk}, nil
	default:
		return nil, nil, ErrBadKeyType
	}
}

// Generates an ephemeral public key and returns a function that will compute
// the shared secret key.  Used in the identify module.
//
// Focuses only on ECDH now, but can be made more general in the future.
func GenerateEKeyPair(curveName string) ([]byte, GenSharedKey, error) {
	var curve elliptic.Curve

	switch curveName {
	case "P-224":
		curve = elliptic.P224()
	case "P-256":
		curve = elliptic.P256()
	case "P-384":
		curve = elliptic.P384()
	case "P-521":
		curve = elliptic.P521()
	}

	priv, x, y, err := elliptic.GenerateKey(curve, rand.Reader)
	if err != nil {
		return nil, nil, err
	}

	pubKey := elliptic.Marshal(curve, x, y)
	// log.Debug("GenerateEKeyPair %d", len(pubKey))

	done := func(theirPub []byte) ([]byte, error) {
		// Verify and unpack node's public key.
		x, y := elliptic.Unmarshal(curve, theirPub)
		if x == nil {
			return nil, fmt.Errorf("Malformed public key: %d %v", len(theirPub), theirPub)
		}

		if !curve.IsOnCurve(x, y) {
			return nil, errors.New("Invalid public key.")
		}

		// Generate shared secret.
		secret, _ := curve.ScalarMult(x, y, priv)

		return secret.Bytes(), nil
	}

	return pubKey, done, nil
}

type StretchedKeys struct {
	IV        []byte
	MacKey    []byte
	CipherKey []byte
}

// Generates a set of keys for each party by stretching the shared key.
// (myIV, theirIV, myCipherKey, theirCipherKey, myMACKey, theirMACKey)
func KeyStretcher(cipherType string, hashType string, secret []byte) (StretchedKeys, StretchedKeys) {
	var cipherKeySize int
	var ivSize int
	switch cipherType {
	case "AES-128":
		ivSize = 16
		cipherKeySize = 16
	case "AES-256":
		ivSize = 16
		cipherKeySize = 32
	case "Blowfish":
		ivSize = 8
		// Note: 24 arbitrarily selected, needs more thought
		cipherKeySize = 32
	}

	hmacKeySize := 20

	seed := []byte("key expansion")

	result := make([]byte, 2*(ivSize+cipherKeySize+hmacKeySize))

	var h func() hash.Hash

	switch hashType {
	case "SHA1":
		h = sha1.New
	case "SHA256":
		h = sha256.New
	case "SHA512":
		h = sha512.New
	default:
		panic("Unrecognized hash function, programmer error?")
	}

	m := hmac.New(h, secret)
	m.Write(seed)

	a := m.Sum(nil)

	j := 0
	for j < len(result) {
		m.Reset()
		m.Write(a)
		m.Write(seed)
		b := m.Sum(nil)

		todo := len(b)

		if j+todo > len(result) {
			todo = len(result) - j
		}

		copy(result[j:j+todo], b)

		j += todo

		m.Reset()
		m.Write(a)
		a = m.Sum(nil)
	}

	half := len(result) / 2
	r1 := result[:half]
	r2 := result[half:]

	var k1 StretchedKeys
	var k2 StretchedKeys

	k1.IV = r1[0:ivSize]
	k1.CipherKey = r1[ivSize : ivSize+cipherKeySize]
	k1.MacKey = r1[ivSize+cipherKeySize:]

	k2.IV = r2[0:ivSize]
	k2.CipherKey = r2[ivSize : ivSize+cipherKeySize]
	k2.MacKey = r2[ivSize+cipherKeySize:]

	return k1, k2
}

// UnmarshalPublicKey converts a protobuf serialized public key into its
// representative object
func UnmarshalPublicKey(data []byte) (PubKey, error) {
	pmes := new(pb.PublicKey)
	err := proto.Unmarshal(data, pmes)
	if err != nil {
		return nil, err
	}

	switch pmes.GetType() {
	case pb.KeyType_RSA:
		return UnmarshalRsaPublicKey(pmes.GetData())
	default:
		return nil, ErrBadKeyType
	}
}

// MarshalPublicKey converts a public key object into a protobuf serialized
// public key
func MarshalPublicKey(k PubKey) ([]byte, error) {
	b, err := MarshalRsaPublicKey(k.(*RsaPublicKey))
	if err != nil {
		return nil, err
	}
	pmes := new(pb.PublicKey)
	typ := pb.KeyType_RSA // for now only type.
	pmes.Type = &typ
	pmes.Data = b
	return proto.Marshal(pmes)
}

// UnmarshalPrivateKey converts a protobuf serialized private key into its
// representative object
func UnmarshalPrivateKey(data []byte) (PrivKey, error) {
	pmes := new(pb.PrivateKey)
	err := proto.Unmarshal(data, pmes)
	if err != nil {
		return nil, err
	}

	switch pmes.GetType() {
	case pb.KeyType_RSA:
		return UnmarshalRsaPrivateKey(pmes.GetData())
	default:
		return nil, ErrBadKeyType
	}
}

// MarshalPrivateKey converts a key object into its protobuf serialized form.
func MarshalPrivateKey(k PrivKey) ([]byte, error) {
	b := MarshalRsaPrivateKey(k.(*RsaPrivateKey))
	pmes := new(pb.PrivateKey)
	typ := pb.KeyType_RSA // for now only type.
	pmes.Type = &typ
	pmes.Data = b
	return proto.Marshal(pmes)
}

// ConfigDecodeKey decodes from b64 (for config file), and unmarshals.
func ConfigDecodeKey(b string) ([]byte, error) {
	return base64.StdEncoding.DecodeString(b)
}

// ConfigEncodeKey encodes to b64 (for config file), and marshals.
func ConfigEncodeKey(b []byte) string {
	return base64.StdEncoding.EncodeToString(b)
}

// KeyEqual checks whether two
func KeyEqual(k1, k2 Key) bool {
	if k1 == k2 {
		return true
	}

	b1, err1 := k1.Bytes()
	b2, err2 := k2.Bytes()
	return bytes.Equal(b1, b2) && err1 == err2
}

// KeyHash hashes a key.
func KeyHash(k Key) ([]byte, error) {
	kb, err := k.Bytes()
	if err != nil {
		return nil, err
	}
	return u.Hash(kb), nil
}