fel.c 32.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/* Needs _BSD_SOURCE for htole and letoh  */
#define _BSD_SOURCE
20
#define _NETBSD_SOURCE
21
22
23
24
25
26
27
28
29
30

#include <libusb.h>
#include <stdint.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <stdio.h>
31
#include <stdarg.h>
32
#include <errno.h>
33
#include <unistd.h>
34
#include <sys/time.h>
35

36
#include "endian_compat.h"
Eric Molitor's avatar
Eric Molitor committed
37

38
39
40
41
42
43
44
45
46
struct  aw_usb_request {
	char signature[8];
	uint32_t length;
	uint32_t unknown1;	/* 0x0c000000 */
	uint16_t request;
	uint32_t length2;	/* Same as length */
	char	pad[10];
}  __attribute__((packed));

47
48
49
50
51
52
53
54
55
56
57
struct aw_fel_version {
	char signature[8];
	uint32_t soc_id;	/* 0x00162300 */
	uint32_t unknown_0a;	/* 1 */
	uint16_t protocol;	/* 1 */
	uint8_t  unknown_12;	/* 0x44 */
	uint8_t  unknown_13;	/* 0x08 */
	uint32_t scratchpad;	/* 0x7e00 */
	uint32_t pad[2];	/* unused */
} __attribute__((packed));

58
59
60
static const int AW_USB_READ = 0x11;
static const int AW_USB_WRITE = 0x12;

61
62
static int AW_USB_FEL_BULK_EP_OUT;
static int AW_USB_FEL_BULK_EP_IN;
63
static int timeout = 60000;
64
static int verbose = 0; /* Makes the 'fel' tool more talkative if non-zero */
65
66
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
67
68
69
70
71
72
73
74
75
76

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
77

78
79
static const int AW_USB_MAX_BULK_SEND = 4 * 1024 * 1024; // 4 MiB per bulk request

80
81
82
83
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data, int length)
{
	int rc, sent;
	while (length > 0) {
84
85
		int len = length < AW_USB_MAX_BULK_SEND ? length : AW_USB_MAX_BULK_SEND;
		rc = libusb_bulk_transfer(usb, ep, (void *)data, len, &sent, timeout);
86
		if (rc != 0) {
87
			fprintf(stderr, "libusb usb_bulk_send error %d\n", rc);
88
89
90
91
92
93
94
95
96
97
98
			exit(2);
		}
		length -= sent;
		data += sent;
	}
}

void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
	int rc, recv;
	while (length > 0) {
99
		rc = libusb_bulk_transfer(usb, ep, data, length, &recv, timeout);
100
		if (rc != 0) {
101
			fprintf(stderr, "usb_bulk_recv error %d\n", rc);
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
			exit(2);
		}
		length -= recv;
		data += recv;
	}
}

void aw_send_usb_request(libusb_device_handle *usb, int type, int length)
{
	struct aw_usb_request req;
	memset(&req, 0, sizeof(req));
	strcpy(req.signature, "AWUC");
	req.length = req.length2 = htole32(length);
	req.request = htole16(type);
	req.unknown1 = htole32(0x0c000000);
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, &req, sizeof(req));
}

void aw_read_usb_response(libusb_device_handle *usb)
{
	char buf[13];
	usb_bulk_recv(usb, AW_USB_FEL_BULK_EP_IN, &buf, sizeof(buf));
	assert(strcmp(buf, "AWUS") == 0);
}

void aw_usb_write(libusb_device_handle *usb, const void *data, size_t len)
{
	aw_send_usb_request(usb, AW_USB_WRITE, len);
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, data, len);
	aw_read_usb_response(usb);
}

void aw_usb_read(libusb_device_handle *usb, const void *data, size_t len)
{
	aw_send_usb_request(usb, AW_USB_READ, len);
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_IN, data, len);
	aw_read_usb_response(usb);
}

struct aw_fel_request {
	uint32_t request;
	uint32_t address;
	uint32_t length;
	uint32_t pad;
};

static const int AW_FEL_VERSION = 0x001;
static const int AW_FEL_1_WRITE = 0x101;
static const int AW_FEL_1_EXEC  = 0x102;
static const int AW_FEL_1_READ  = 0x103;

void aw_send_fel_request(libusb_device_handle *usb, int type, uint32_t addr, uint32_t length)
{
	struct aw_fel_request req;
	memset(&req, 0, sizeof(req));
	req.request = htole32(type);
	req.address = htole32(addr);
	req.length = htole32(length);
	aw_usb_write(usb, &req, sizeof(req));
}

void aw_read_fel_status(libusb_device_handle *usb)
{
	char buf[8];
	aw_usb_read(usb, &buf, sizeof(buf));
}

169
void aw_fel_get_version(libusb_device_handle *usb, struct aw_fel_version *buf)
170
171
{
	aw_send_fel_request(usb, AW_FEL_VERSION, 0, 0);
172
	aw_usb_read(usb, buf, sizeof(*buf));
173
174
	aw_read_fel_status(usb);

175
176
177
178
179
180
181
182
183
184
185
186
	buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
	buf->unknown_0a = le32toh(buf->unknown_0a);
	buf->protocol = le32toh(buf->protocol);
	buf->scratchpad = le16toh(buf->scratchpad);
	buf->pad[0] = le32toh(buf->pad[0]);
	buf->pad[1] = le32toh(buf->pad[1]);
}

void aw_fel_print_version(libusb_device_handle *usb)
{
	struct aw_fel_version buf;
	aw_fel_get_version(usb, &buf);
187

Henrik Nordstrom's avatar
Henrik Nordstrom committed
188
	const char *soc_name="unknown";
189
	switch (buf.soc_id) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
190
191
192
	case 0x1623: soc_name="A10";break;
	case 0x1625: soc_name="A13";break;
	case 0x1633: soc_name="A31";break;
193
	case 0x1651: soc_name="A20";break;
Chen-Yu Tsai's avatar
Chen-Yu Tsai committed
194
	case 0x1650: soc_name="A23";break;
Chen-Yu Tsai's avatar
Chen-Yu Tsai committed
195
	case 0x1639: soc_name="A80";break;
196
	case 0x1667: soc_name="A33";break;
197
	case 0x1673: soc_name="A83T";break;
198
	case 0x1680: soc_name="H3";break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
199
200
	}

201
202
203
204
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
205
206
207
208
209
210
211
212
213
214
215
}

void aw_fel_read(libusb_device_handle *usb, uint32_t offset, void *buf, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_READ, offset, len);
	aw_usb_read(usb, buf, len);
	aw_read_fel_status(usb);
}

void aw_fel_write(libusb_device_handle *usb, void *buf, uint32_t offset, size_t len)
{
216
217
218
219
220
221
222
223
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size && offset + len >= uboot_entry) {
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
			offset, offset + (int)len,
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
	aw_usb_write(usb, buf, len);
	aw_read_fel_status(usb);
}

void aw_fel_execute(libusb_device_handle *usb, uint32_t offset)
{
	aw_send_fel_request(usb, AW_FEL_1_EXEC, offset, 0);
	aw_read_fel_status(usb);
}

void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
		printf("%08lx: ",(long int)offset + j);
		for (i = 0; i < 16; i++) {
			if ((j+i) < size) {
				printf("%02x ", buf[j+i]);
			} else {
				printf("__ ");
			}
		}
		printf(" ");
		for (i = 0; i < 16; i++) {
			if (j+i >= size) {
				printf(".");
			} else if (isprint(buf[j+i])) {
				printf("%c", buf[j+i]);
			} else {
				printf(".");
			}
		}
		printf("\n");
	}
}
262
263
264
265
266

int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
267
268
269
270
	if (!out) {
		perror("Failed to open output file: ");
		exit(1);
	}
271
272
273
274
275
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

276
277
278
279
280
281
282
283
284
285
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
286
287
288
289
	if (!in) {
		perror("Failed to open input file: ");
		exit(1);
	}
290
291
	
	while(1) {
292
293
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
294
		offset += n;
295
		if (n < len)
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

void aw_fel_hexdump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	hexdump(buf, offset, size);
}

void aw_fel_dump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	fwrite(buf, size, 1, stdout);
}
Henrik Nordstrom's avatar
Henrik Nordstrom committed
320
void aw_fel_fill(libusb_device_handle *usb, uint32_t offset, size_t size, unsigned char value)
321
322
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
323
	memset(buf, value, size);
324
325
326
	aw_fel_write(usb, buf, offset, size);
}

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/*
 * The 'sram_swap_buffers' structure is used to describe information about
 * two buffers in SRAM, the content of which needs to be exchanged before
 * calling the U-Boot SPL code and then exchanged again before returning
 * control back to the FEL code from the BROM.
 */

typedef struct {
	uint32_t buf1; /* BROM buffer */
	uint32_t buf2; /* backup storage location */
	uint32_t size; /* buffer size */
} sram_swap_buffers;

/*
 * Each SoC variant may have its own list of memory buffers to be exchanged
 * and the information about the placement of the thunk code, which handles
 * the transition of execution from the BROM FEL code to the U-Boot SPL and
 * back.
 *
 * Note: the entries in the 'swap_buffers' tables need to be sorted by 'buf1'
 * addresses. And the 'buf1' addresses are the BROM data buffers, while 'buf2'
 * addresses are the intended backup locations.
 */
typedef struct {
351
	uint32_t           soc_id;       /* ID of the SoC */
352
	uint32_t           spl_addr;     /* SPL load address */
353
354
355
356
	uint32_t           scratch_addr; /* A safe place to upload & run code */
	uint32_t           thunk_addr;   /* Address of the thunk code */
	uint32_t           thunk_size;   /* Maximal size of the thunk code */
	uint32_t           needs_l2en;   /* Set the L2EN bit */
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
	sram_swap_buffers *swap_buffers;
} soc_sram_info;

/*
 * The FEL code from BROM in A10/A13/A20 sets up two stacks for itself. One
 * at 0x2000 (and growing down) for the IRQ handler. And another one at 0x7000
 * (and also growing down) for the regular code. In order to use the whole
 * 32 KiB in the A1/A2 sections of SRAM, we need to temporarily move these
 * stacks elsewhere. And the addresses above 0x7000 are also a bit suspicious,
 * so it might be safer to backup the 0x7000-0x8000 area too. On A10/A13/A20
 * we can use the SRAM section A3 (0x8000) for this purpose.
 */
sram_swap_buffers a10_a13_a20_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x8000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x8800, .size = 0x8000 - 0x5C00 },
	{ 0 }  /* End of the table */
};

/*
 * A31 is very similar to A10/A13/A20, except that it has no SRAM at 0x8000.
 * So we use the SRAM section at 0x44000 instead. This is the memory, which
 * is normally shared with the OpenRISC core (should we do an extra check to
 * ensure that this core is powered off and can't interfere?).
 */
sram_swap_buffers a31_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x44000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x44800, .size = 0x8000 - 0x5C00 },
	{ 0 }  /* End of the table */
};

soc_sram_info soc_sram_info_table[] = {
	{
		.soc_id       = 0x1623, /* Allwinner A10 */
390
		.scratch_addr = 0x2000,
391
392
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
393
		.needs_l2en   = 1,
394
395
396
	},
	{
		.soc_id       = 0x1625, /* Allwinner A13 */
397
		.scratch_addr = 0x2000,
398
399
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
400
		.needs_l2en   = 1,
401
402
403
	},
	{
		.soc_id       = 0x1651, /* Allwinner A20 */
404
		.scratch_addr = 0x2000,
405
406
407
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
	},
Hans de Goede's avatar
Hans de Goede committed
408
409
	{
		.soc_id       = 0x1650, /* Allwinner A23 */
410
		.scratch_addr = 0x2000,
Hans de Goede's avatar
Hans de Goede committed
411
412
413
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
414
415
	{
		.soc_id       = 0x1633, /* Allwinner A31 */
416
		.scratch_addr = 0x2000,
417
418
419
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
420
421
	{
		.soc_id       = 0x1667, /* Allwinner A33 */
422
		.scratch_addr = 0x2000,
423
424
425
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
426
427
	{
		.soc_id       = 0x1673, /* Allwinner A83T */
428
		.scratch_addr = 0x2000,
429
430
431
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
432
433
	{
		.soc_id       = 0x1680, /* Allwinner H3 */
434
		.scratch_addr = 0x2000,
435
436
437
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
	{ 0 } /* End of the table */
};

/*
 * This generic record assumes BROM with similar properties to A10/A13/A20/A31,
 * but no extra SRAM sections beyond 0x8000. It also assumes that the IRQ
 * handler stack usage never exceeds 0x400 bytes.
 *
 * The users may or may not hope that the 0x7000-0x8000 area is also unused
 * by the BROM and re-purpose it for the SPL stack.
 *
 * The size limit for the ".text + .data" sections is ~21 KiB.
 */
sram_swap_buffers generic_sram_swap_buffers[] = {
	{ .buf1 = 0x01C00, .buf2 = 0x5800, .size = 0x400 },
	{ 0 }  /* End of the table */
};

soc_sram_info generic_sram_info = {
457
	.scratch_addr = 0x2000,
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
	.thunk_addr   = 0x5680, .thunk_size = 0x180,
	.swap_buffers = generic_sram_swap_buffers,
};

soc_sram_info *aw_fel_get_sram_info(libusb_device_handle *usb)
{
	int i;
	struct aw_fel_version buf;

	aw_fel_get_version(usb, &buf);

	for (i = 0; soc_sram_info_table[i].swap_buffers; i++)
		if (soc_sram_info_table[i].soc_id == buf.soc_id)
			return &soc_sram_info_table[i];

	printf("Warning: no 'soc_sram_info' data for your SoC (id=%04X)\n",
	       buf.soc_id);
	return &generic_sram_info;
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

482
483
484
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

485
void aw_enable_l2_cache(libusb_device_handle *usb, soc_sram_info *sram_info)
486
487
488
489
490
491
492
493
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

494
495
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
496
497
}

498
499
void aw_get_stackinfo(libusb_device_handle *usb, soc_sram_info *sram_info,
                      uint32_t *sp_irq, uint32_t *sp)
500
501
502
503
504
505
506
507
508
509
510
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

511
512
513
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x10, results, 8);
514
515
516
517
518
519
520
521
522
523
524
525
526
527
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

528
529
530
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x24, results, 8);
531
532
533
534
535
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

536
uint32_t aw_get_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info)
537
538
539
540
541
542
543
544
{
	uint32_t ttbr0 = 0;
	uint32_t arm_code[] = {
		htole32(0xee122f10), /* mrc        15, 0, r2, cr2, cr0, {0}  */
		htole32(0xe58f2008), /* str        r2, [pc, #8]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

545
546
547
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x14, &ttbr0, sizeof(ttbr0));
548
549
550
551
	ttbr0 = le32toh(ttbr0);
	return ttbr0;
}

552
uint32_t aw_get_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info)
553
554
555
556
557
558
559
560
{
	uint32_t sctlr = 0;
	uint32_t arm_code[] = {
		htole32(0xee112f10), /* mrc        15, 0, r2, cr1, cr0, {0}  */
		htole32(0xe58f2008), /* str        r2, [pc, #8]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

561
562
563
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x14, &sctlr, sizeof(sctlr));
564
565
566
567
	sctlr = le32toh(sctlr);
	return sctlr;
}

568
569
uint32_t *aw_backup_and_disable_mmu(libusb_device_handle *usb,
                                    soc_sram_info *sram_info)
570
{
571
	uint32_t *tt = NULL;
572
573
	uint32_t ttbr0 = aw_get_ttbr0(usb, sram_info);
	uint32_t sctlr = aw_get_sctlr(usb, sram_info);
574
575
576
	uint32_t i;

	uint32_t arm_code[] = {
577
		/* Disable I-cache, MMU and branch prediction */
578
579
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
580
581
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
582
583
584
585
586
587
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

	if (!(sctlr & 1)) {
588
589
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
590
591
592
593
594
595
596
597
598
599
600
601
	}

	if ((sctlr >> 28) & 1) {
		fprintf(stderr, "TEX remap is enabled!\n");
		exit(1);
	}

	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

602
	tt = malloc(16 * 1024);
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
	aw_fel_read(usb, ttbr0, tt, 16 * 1024);
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

620
	pr_info("Disabling I-cache, MMU and branch prediction...");
621
622
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
623
624
625
626
627
	pr_info(" done.\n");

	return tt;
}

628
629
630
void aw_restore_and_enable_mmu(libusb_device_handle *usb,
                               soc_sram_info *sram_info,
                               uint32_t *tt)
631
632
{
	uint32_t i;
633
	uint32_t ttbr0 = aw_get_ttbr0(usb, sram_info);
634
635

	uint32_t arm_code[] = {
636
637
638
639
640
641
642
643
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
644
645
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
646
647
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
648
649
650
651
652
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

669
670
671
672
673
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
	aw_fel_write(usb, tt, ttbr0, 16 * 1024);

674
	pr_info("Enabling I-cache, MMU and branch prediction...");
675
676
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
677
678
679
680
681
	pr_info(" done.\n");

	free(tt);
}

682
683
684
685
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
686
#define SPL_LEN_LIMIT 0x8000
687

688
689
690
691
692
693
694
695
void aw_fel_write_and_execute_spl(libusb_device_handle *usb,
				  uint8_t *buf, size_t len)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
696
	uint32_t sp, sp_irq;
697
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
698
	uint32_t *buf32 = (uint32_t *)buf;
699
	uint32_t cur_addr = sram_info->spl_addr;
700
	uint32_t *tt = NULL;
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

	if (!sram_info || !sram_info->swap_buffers) {
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

729
730
	if (sram_info->needs_l2en) {
		pr_info("Enabling the L2 cache\n");
731
		aw_enable_l2_cache(usb, sram_info);
732
733
	}

734
	aw_get_stackinfo(usb, sram_info, &sp_irq, &sp);
735
736
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

737
	tt = aw_backup_and_disable_mmu(usb, sram_info);
738

739
740
	swap_buffers = sram_info->swap_buffers;
	for (i = 0; swap_buffers[i].size; i++) {
741
742
743
744
745
		if ((swap_buffers[i].buf2 >= sram_info->spl_addr) &&
		    (swap_buffers[i].buf2 < sram_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - sram_info->spl_addr;
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
746
747
			if (tmp > len)
				tmp = len;
748
749
			aw_fel_write(usb, buf, cur_addr, tmp);
			cur_addr += tmp;
750
751
752
			buf += tmp;
			len -= tmp;
		}
753
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
754
755
756
757
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
			aw_fel_write(usb, buf, swap_buffers[i].buf2, tmp);
758
			cur_addr += tmp;
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
	if (sram_info->thunk_addr < spl_len_limit)
		spl_len_limit = sram_info->thunk_addr;

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
776
		aw_fel_write(usb, buf, cur_addr, len);
777

778
779
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(sram_info->spl_addr) +
		     (i + 1) * sizeof(*swap_buffers);
780
781
782
783
784
785
786
787
788
789

	if (thunk_size > sram_info->thunk_size) {
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
			(int)sizeof(fel_to_spl_thunk), sram_info->thunk_size);
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
790
791
	       &sram_info->spl_addr, sizeof(sram_info->spl_addr));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
792
793
794
795
796
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

797
	pr_info("=> Executing the SPL...");
798
799
	aw_fel_write(usb, thunk_buf, sram_info->thunk_addr, thunk_size);
	aw_fel_execute(usb, sram_info->thunk_addr);
800
	pr_info(" done.\n");
801
802
803
804
805
806
807

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
808
	aw_fel_read(usb, sram_info->spl_addr + 4, header_signature, 8);
809
810
811
812
813
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
814

815
816
	/* re-enable the MMU if it was enabled by BROM */
	if(tt != NULL)
817
		aw_restore_and_enable_mmu(usb, sram_info, tt);
818
819
}

820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_NMLEN		32	/* Image Name Length	*/

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
void aw_fel_write_uboot_image(libusb_device_handle *usb,
		uint8_t *buf, size_t len)
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	/* Check for a valid mkimage header */
	uint32_t *buf32 = (uint32_t *)buf;

	if (be32toh(buf32[0]) != IH_MAGIC) {
		fprintf(stderr, "U-Boot image verification failure: "
			"expected IH_MAGIC, got 0x%X\n", be32toh(buf32[0]));
		exit(1);
	}
	if (buf[29] != IH_ARCH_ARM|| buf[30] != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image verification failure: "
			"expected ARM firmware, got %02X %02X\n", buf[29], buf[30]);
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
	if ((size_t)data_size != len - HEADER_SIZE) {
		fprintf(stderr, "U-Boot image data size mismatch: "
			"expected %d, got %u\n", (int)len - HEADER_SIZE,
			data_size);
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.cabs
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

	aw_fel_write(usb, buf + HEADER_SIZE, load_addr, data_size);

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
void aw_fel_process_spl_and_uboot(libusb_device_handle *usb,
		const char *filename)
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
	aw_fel_write_and_execute_spl(usb, buf, size);
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
897
898
	if (size > SPL_LEN_LIMIT)
		aw_fel_write_uboot_image(usb, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
899
900
}

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
static int aw_fel_get_endpoint(libusb_device_handle *usb)
{
	struct libusb_device *dev = libusb_get_device(usb);
	struct libusb_config_descriptor *config;
	int if_idx, set_idx, ep_idx, ret;

	ret = libusb_get_active_config_descriptor(dev, &config);
	if (ret)
		return ret;

	for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
		const struct libusb_interface *iface = config->interface + if_idx;

		for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
			const struct libusb_interface_descriptor *setting =
				iface->altsetting + set_idx;

			for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
				const struct libusb_endpoint_descriptor *ep =
					setting->endpoint + ep_idx;

				// Test for bulk transfer endpoint
				if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) !=
						LIBUSB_TRANSFER_TYPE_BULK)
					continue;

				if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
						LIBUSB_ENDPOINT_IN)
					AW_USB_FEL_BULK_EP_IN = ep->bEndpointAddress;
				else
					AW_USB_FEL_BULK_EP_OUT = ep->bEndpointAddress;
			}
		}
	}

	libusb_free_config_descriptor(config);

	return 0;
}

941
942
943
944
945
946
947
948
/* Less reliable than clock_gettime, but does not require linking with -lrt */
static double gettime(void)
{
	struct timeval tv;
	gettimeofday(&tv, NULL);
	return tv.tv_sec + (double)tv.tv_usec / 1000000.;
}

949
950
int main(int argc, char **argv)
{
951
	int uboot_autostart = 0; /* flag for "uboot" command = U-Boot autostart */
952
953
	int rc;
	libusb_device_handle *handle = NULL;
954
	int iface_detached = -1;
955
956
957
958
	rc = libusb_init(NULL);
	assert(rc == 0);

	if (argc <= 1) {
959
960
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
961
962
963
964
965
966
967
968
969
970
971
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
972
973
974
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
975
			"	read address length file	Write memory contents into file\n"
976
977
978
			"	write address file		Store file contents into memory\n"
			"	ver[sion]			Show BROM version\n"
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
979
			"	fill address length value	Fill memory\n"
980
981
982
983
984
985
			, argv[0]
		);
	}

	handle = libusb_open_device_with_vid_pid(NULL, 0x1f3a, 0xefe8);
	if (!handle) {
986
987
988
989
990
991
992
993
		switch (errno) {
		case EACCES:
			fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
			break;
		default:
			fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
			break;
		}
994
995
996
		exit(1);
	}
	rc = libusb_claim_interface(handle, 0);
997
998
999
1000
1001
1002
1003
#if defined(__linux__)
	if (rc != LIBUSB_SUCCESS) {
		libusb_detach_kernel_driver(handle, 0);
		iface_detached = 0;
		rc = libusb_claim_interface(handle, 0);
	}
#endif
1004
1005
	assert(rc == 0);

1006
1007
1008
1009
1010
	if (aw_fel_get_endpoint(handle)) {
		fprintf(stderr, "ERROR: Failed to get FEL mode endpoint addresses!\n");
		exit(1);
	}

1011
1012
1013
1014
1015
1016
1017
	if (argc > 1 && (strcmp(argv[1], "--verbose") == 0 ||
			 strcmp(argv[1], "-v") == 0)) {
		verbose = 1;
		argc -= 1;
		argv += 1;
	}

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
	while (argc > 1 ) {
		int skip = 1;
		if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if ((strncmp(argv[1], "exe", 3) == 0 && argc > 2)
			) {
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
		} else if (strncmp(argv[1], "ver", 3) == 0 && argc > 1) {
1031
			aw_fel_print_version(handle);
1032
1033
			skip=1;
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1034
			double t1, t2;
1035
1036
			size_t size;
			void *buf = load_file(argv[3], &size);
1037
			t1 = gettime();
1038
			aw_fel_write(handle, buf, strtoul(argv[2], NULL, 0), size);
1039
1040
1041
1042
1043
			t2 = gettime();
			if (t2 > t1)
				pr_info("Written %.1f KB in %.1f sec (speed: %.1f KB/s)\n",
					(double)size / 1000., t2 - t1,
					(double)size / (t2 - t1) / 1000.);
1044
1045
			free(buf);
			skip=3;
1046
1047
1048
1049
1050
1051
1052
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1053
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1054
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1055
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1056
1057
1058
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1059
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1060
1061
1062
1063
1064
1065
1066
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1067
			skip=2;
1068
1069
1070
1071
1072
1073
1074
1075
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

1076
1077
1078
1079
1080
1081
	// auto-start U-Boot if requested (by the "uboot" command)
	if (uboot_autostart) {
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1082
1083
1084
1085
1086
#if defined(__linux__)
	if (iface_detached >= 0)
		libusb_attach_kernel_driver(handle, iface_detached);
#endif

1087
1088
	return 0;
}