user-guide.md 42.4 KB
Newer Older
1
2
3
4
5
ARM Trusted Firmware User Guide
===============================

Contents :

6
7
8
9
10
11
12
13
14
1.  [Introduction](#1--introduction)
2.  [Host machine requirements](#2--host-machine-requirements)
3.  [Tools](#3--tools)
4.  [Building the Trusted Firmware](#4--building-the-trusted-firmware)
5.  [Obtaining the normal world software](#5--obtaining-the-normal-world-software)
6.  [Preparing the images to run on FVP](#6--preparing-the-images-to-run-on-fvp)
7.  [Running the software on FVP](#7--running-the-software-on-fvp)
8.  [Preparing the images to run on Juno](#8--preparing-the-images-to-run-on-juno)
9.  [Running the software on Juno](#9--running-the-software-on-juno)
15
16
17
18


1.  Introduction
----------------
19
This document describes how to build ARM Trusted Firmware and run it with a
20
21
22
23
tested set of other software components using defined configurations on the Juno
ARM development platform and ARM Fixed Virtual Platform (FVP) models. It is
possible to use other software components, configurations and platforms but that
is outside the scope of this document.
24

25
This document should be used in conjunction with the [Firmware Design].
26
27


28
29
2.  Host machine requirements
-----------------------------
30

31
The minimum recommended machine specification for building the software and
32
33
34
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
35

36
The software has been tested on Ubuntu 12.04.04 (64-bit).  Packages used
37
38
for building the software were installed from that distribution unless
otherwise specified.
39
40


41
42
3.  Tools
---------
43
44
45

The following tools are required to use the ARM Trusted Firmware:

46
*   `git` package to obtain source code.
47

48
*   `build-essential`, `uuid-dev` and `iasl` packages for building UEFI and the
49
    Firmware Image Package (FIP) tool.
50

51
52
53
54
*   `bc` and `ncurses-dev` packages for building Linux.

*   `device-tree-compiler` package for building the Flattened Device Tree (FDT)
    source files (`.dts` files) provided with this software.
55
56
57

*   Baremetal GNU GCC tools. Verified packages can be downloaded from [Linaro]
    [Linaro Toolchain]. The rest of this document assumes that the
58
    `gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz` tools are used.
59

60
61
        wget http://releases.linaro.org/14.07/components/toolchain/binaries/gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
        tar -xf gcc-linaro-aarch64-none-elf-4.9-2014.07_linux.tar.xz
62

63
*   (Optional) For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.19.
64
65


66
67
4.  Building the Trusted Firmware
---------------------------------
68

69
To build the Trusted Firmware images, follow these steps:
70

71
1.  Clone the ARM Trusted Firmware repository from GitHub:
72
73
74
75
76
77
78

        git clone https://github.com/ARM-software/arm-trusted-firmware.git

2.  Change to the trusted firmware directory:

        cd arm-trusted-firmware

79
3.  Set the compiler path, specify a Non-trusted Firmware image (BL3-3) and
80
    a valid platform, and then build:
81

82
83
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        BL33=<path-to>/<bl33_image>                               \
84
        make PLAT=<platform> all fip
85

86
87
88
89
90
91
92
93
94
95
    If `PLAT` is not specified, `fvp` is assumed by default. See the "Summary of
    build options" for more information on available build options.

    The BL3-3 image corresponds to the software that is executed after switching
    to the non-secure world. UEFI can be used as the BL3-3 image. Refer to the
    "Obtaining the normal world software" section below.

    The TSP (Test Secure Payload), corresponding to the BL3-2 image, is not
    compiled in by default. Refer to the "Building the Test Secure Payload"
    section below.
96

97
    By default this produces a release version of the build. To produce a debug
98
    version instead, refer to the "Debugging options" section below.
99

100
101
102
103
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
104

105
106
107
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
108

109
    where `<platform>` is the name of the chosen platform and `<build-type>` is
110
111
112
    either `debug` or `release`. A Firmare Image Package (FIP) will be created
    as part of the build. It contains all boot loader images except for
    `bl1.bin`.
113

114
    *   `build/<platform>/<build-type>/fip.bin`
115

116
117
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
118

119
120
4.  (Optional) Some platforms may require a BL3-0 image to boot. This image can
    be included in the FIP when building the Trusted Firmware by specifying the
121
    `BL30` build option:
122
123
124
125
126
127

        BL30=<path-to>/<bl30_image>

5.  Output binary files `bl1.bin` and `fip.bin` are both required to boot the
    system. How these files are used is platform specific. Refer to the
    platform documentation on how to use the firmware images.
128

129
6.  (Optional) Build products for a specific build variant can be removed using:
130

131
        make DEBUG=<D> PLAT=<platform> clean
132
133
134
135
136
137

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
138

139
140
141
142
143
144
145
146
147
148
7.  (Optional) Path to binary for certain BL stages (BL2, BL3-1 and BL3-2) can be
    provided by specifying the BLx=<path-to>/<blx_image> where BLx is the BL stage.
    This will bypass the build of the BL component from source, but will include
    the specified binary in the final FIP image. Please note that BL3-2 will be
    included in the build, only if the `SPD` build option is specified.

    For example, specifying BL2=<path-to>/<bl2_image> in the build option, will
    skip compilation of BL2 source in trusted firmware, but include the BL2
    binary specified in the final FIP image.

149
150
151
152
153
154
155
156
157
### Summary of build options

ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.

158
159
#### Common build options

160
161
*   `BL30`: Path to BL3-0 image in the host file system. This image is optional.
    If a BL3-0 image is present then this option must be passed for the `fip`
162
    target.
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
*   `BL33`: Path to BL3-3 image in the host file system. This is mandatory for
    `fip` target in case the BL2 from ARM Trusted Firmware is used.

*   `BL2`: This is an optional build option which specifies the path to BL2
    image for the `fip` target. In this case, the BL2 in the ARM Trusted
    Firmware will not be built.

*   `BL31`:  This is an optional build option which specifies the path to
    BL3-1 image for the `fip` target. In this case, the BL3-1 in the ARM
    Trusted Firmware will not be built.

*   `BL32`:  This is an optional build option which specifies the path to
    BL3-2 image for the `fip` target. In this case, the BL3-2 in the ARM
    Trusted Firmware will not be built.
178

179
180
181
*   `FIP_NAME`: This is an optional build option which specifies the FIP
    filename for the `fip` target. Default is `fip.bin`.

182
183
*   `CROSS_COMPILE`: Prefix to toolchain binaries. Please refer to examples in
    this document for usage.
184
185

*   `DEBUG`: Chooses between a debug and release build. It can take either 0
186
    (release) or 1 (debug) as values. 0 is the default.
187

188
189
190
191
192
193
194
195
196
197
198
199
200
*   `LOG_LEVEL`: Chooses the log level, which controls the amount of console log
    output compiled into the build. This should be one of the following:

        0  (LOG_LEVEL_NONE)
        10 (LOG_LEVEL_NOTICE)
        20 (LOG_LEVEL_ERROR)
        30 (LOG_LEVEL_WARNING)
        40 (LOG_LEVEL_INFO)
        50 (LOG_LEVEL_VERBOSE)

    All log output up to and including the log level is compiled into the build.
    The default value is 40 in debug builds and 20 in release builds.

201
202
*   `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
    contents upon world switch. It can take either 0 (don't save and restore) or
203
204
    1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
    wants the timer registers to be saved and restored.
205

206
207
*   `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
    platform name must be the name of one of the directories under the `plat/`
208
    directory other than `common`.
209
210
211

*   `SPD`: Choose a Secure Payload Dispatcher component to be built into the
    Trusted Firmware. The value should be the path to the directory containing
212
213
    the SPD source, relative to `services/spd/`; the directory is expected to
    contain a makefile called `<spd-value>.mk`.
214
215

*   `V`: Verbose build. If assigned anything other than 0, the build commands
216
    are printed. Default is 0.
217

218
219
*   `ARM_GIC_ARCH`: Choice of ARM GIC architecture version used by the ARM GIC
    driver for implementing the platform GIC API. This API is used
220
    by the interrupt management framework. Default is 2 (that is, version 2.0).
221

222
223
224
225
226
*   `IMF_READ_INTERRUPT_ID`: Boolean flag used by the interrupt management
    framework to enable passing of the interrupt id to its handler. The id is
    read using a platform GIC API. `INTR_ID_UNAVAILABLE` is passed instead if
    this option set to 0. Default is 0.

227
*   `RESET_TO_BL31`: Enable BL3-1 entrypoint as the CPU reset vector instead
228
229
230
231
    of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
    entrypoint) or 1 (CPU reset to BL3-1 entrypoint).
    The default value is 0.

232
233
234
235
*   `CRASH_REPORTING`: A non-zero value enables a console dump of processor
    register state when an unexpected exception occurs during execution of
    BL3-1. This option defaults to the value of `DEBUG` - i.e. by default
    this is only enabled for a debug build of the firmware.
236

237
238
*   `ASM_ASSERTION`: This flag determines whether the assertion checks within
    assembly source files are enabled or not. This option defaults to the
239
    value of `DEBUG` - that is, by default this is only enabled for a debug
240
241
    build of the firmware.

242
*   `TSP_INIT_ASYNC`: Choose BL3-2 initialization method as asynchronous or
243
244
    synchronous, (see "Initializing a BL3-2 Image" section in [Firmware
    Design]). It can take the value 0 (BL3-2 is initialized using
245
246
247
    synchronous method) or 1 (BL3-2 is initialized using asynchronous method).
    Default is 0.

248
249
250
251
252
253
*   `USE_COHERENT_MEM`: This flag determines whether to include the coherent
    memory region in the BL memory map or not (see "Use of Coherent memory in
    Trusted Firmware" section in [Firmware Design]). It can take the value 1
    (Coherent memory region is included) or 0 (Coherent memory region is
    excluded). Default is 1.

254
255
256
257
258
*   `TSPD_ROUTE_IRQ_TO_EL3`: A non zero value enables the routing model
    for non-secure interrupts in which they are routed to EL3 (TSPD). The
    default model (when the value is 0) is to route non-secure interrupts
    to S-EL1 (TSP).

259
260
261
#### FVP specific build options

*   `FVP_TSP_RAM_LOCATION`: location of the TSP binary. Options:
262
    -   `tsram` : Trusted SRAM (default option)
263
    -   `tdram` : Trusted DRAM
264
    -   `dram`  : Secure region in DRAM (configured by the TrustZone controller)
265

266
267
For a better understanding of FVP options, the FVP memory map is explained in
the [Firmware Design].
268

269
270
271
272
273
274
#### Juno specific build options

*   `PLAT_TSP_LOCATION`: location of the TSP binary. Options:
    -   `tsram` : Trusted SRAM (default option)
    -   `dram`  : Secure region in DRAM (set by the TrustZone controller)

275
276
277
278
279
280
281
282
283
284
285
286
287
288
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

289
Create a Firmware package that contains existing BL2 and BL3-1 images:
290
291
292
293

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
294
       --bl2 build/<platform>/debug/bl2.bin --bl31 build/<platform>/debug/bl31.bin
295
296
297
298

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
299
      file: 'build/<platform>/debug/bl2.bin'
300
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
301
      file: 'build/<platform>/debug/bl31.bin'
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
    - EL3 Runtime Firmware BL3-1: offset=0x8270, size=0xC218
    ---------------------------

Existing package entries can be individially updated:

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
319
      --bl2 build/<platform>/release/bl2.bin
320
321
322
323

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
324
      file: 'build/<platform>/release/bl2.bin'
325
326
327
328
329
330
    - EL3 Runtime Firmware BL3-1: offset=0x72C8, size=0xC218
    ---------------------------
    Updating "fip.bin"


### Debugging options
331
332
333

To compile a debug version and make the build more verbose use

334
335
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
336
    make PLAT=<platform> DEBUG=1 V=1 all fip
337
338
339
340
341
342
343
344
345
346
347

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
348
349
might need to be recalculated (see the "Memory layout of BL images" section in
the [Firmware Design]).
350
351
352

Extra debug options can be passed to the build system by setting `CFLAGS`:

353
354
    CFLAGS='-O0 -gdwarf-2'                                    \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
355
    BL33=<path-to>/<bl33_image>                               \
356
    make PLAT=<platform> DEBUG=1 V=1 all fip
357
358


359
360
361
362
363
364
365
366
367
368
369
370
### Building the Test Secure Payload

The TSP is coupled with a companion runtime service in the BL3-1 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL3-1 image
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].

First clean the Trusted Firmware build directory to get rid of any previous
BL3-1 binary. Then to build the TSP image and include it into the FIP use:

    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
    BL33=<path-to>/<bl33_image>                               \
371
    make PLAT=<platform> SPD=tspd all fip
372
373
374

An additional boot loader binary file is created in the `build` directory:

375
*   `build/<platform>/<build-type>/bl32.bin`
376

377
378
379
The FIP will now contain the additional BL3-2 image. Here is an example
output from an FVP build in release mode including BL3-2 and using
FVP_AARCH64_EFI.fd as BL3-3 image:
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
      file: './build/fvp/release/bl2.bin'
    - EL3 Runtime Firmware BL3-1: offset=0x60D8, size=0x9000
      file: './build/fvp/release/bl31.bin'
    - Secure Payload BL3-2 (Trusted OS): offset=0xF0D8, size=0x3000
      file: './build/fvp/release/bl32.bin'
    - Non-Trusted Firmware BL3-3: offset=0x120D8, size=0x280000
      file: '../FVP_AARCH64_EFI.fd'
    ---------------------------
    Creating "build/fvp/release/fip.bin"


395
### Checking source code style
396
397
398

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
399
400
the project Makefile contains two targets, which both utilise the
`checkpatch.pl` script that ships with the Linux source tree.
401

402
403
404
To check the entire source tree, you must first download a copy of
`checkpatch.pl` (or the full Linux source), set the `CHECKPATCH` environment
variable to point to the script and build the target checkcodebase:
405

406
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
407
408
409
410

To just check the style on the files that differ between your local branch and
the remote master, use:

411
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
412
413

If you wish to check your patch against something other than the remote master,
414
415
set the `BASE_COMMIT` variable to your desired branch. By default, `BASE_COMMIT`
is set to `origin/master`.
416
417


418
419
5.  Obtaining the normal world software
---------------------------------------
420

421
### Obtaining EDK2
422

423
424
425
Potentially any kind of non-trusted firmware may be used with the ARM Trusted
Firmware but the software has only been tested with the EFI Development Kit 2
(EDK2) open source implementation of the UEFI specification.
426

427
To build the software to be compatible with the Foundation and Base FVPs, or the
428
Juno platform, follow these steps:
429

430
1.  Clone the [EDK2 source code][EDK2] from GitHub:
431

432
        git clone -n https://github.com/tianocore/edk2.git
433

434
435
436
437
438
439
    Not all required features are available in the EDK2 mainline yet. These can
    be obtained from the ARM-software EDK2 repository instead:

        cd edk2
        git remote add -f --tags arm-software https://github.com/ARM-software/edk2.git
        git checkout --detach v1.2
440

441
2.  Copy build config templates to local workspace
442

443
        # in edk2/
444
        . edksetup.sh
445

446
3.  Build the EDK2 host tools
447

448
449
        make -C BaseTools clean
        make -C BaseTools
450

451
4.  Build the EDK2 software
452

453
454
455
456
457
458
459
460
461
462
463
464
    1.  Build for FVP

            GCC49_AARCH64_PREFIX=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
            make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64 \
            EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
            EDK2_TOOLCHAIN=GCC49 EDK2_BUILD=RELEASE \
            EDK2_MACROS="-n 6 -D ARM_FOUNDATION_FVP=1"

        The EDK2 binary for use with the ARM Trusted Firmware can then be found
        here:

             Build/ArmVExpress-FVP-AArch64/RELEASE_GCC49/FV/FVP_AARCH64_EFI.fd
465

466
    2.  Build for Juno
467

468
469
470
            GCC49_AARCH64_PREFIX=<absolute-path-to-aarch64-gcc>/bin/aarch64-none-elf- \
            make -f ArmPlatformPkg/ArmJunoPkg/Makefile EDK2_ARCH=AARCH64 \
            EDK2_TOOLCHAIN=GCC49 EDK2_BUILD=RELEASE
471

472
473
        The EDK2 binary for use with the ARM Trusted Firmware can then be found
        here:
474

475
476
477
478
479
480
481
482
483
484
            Build/ArmJuno/RELEASE_GCC49/FV/BL33_AP_UEFI.fd

    The EDK2 binary should be specified as `BL33` in in the `make` command line
    when building the Trusted Firmware. See the "Building the Trusted Firmware"
    section above.

5.  (Optional) To build EDK2 in debug mode, remove `EDK2_BUILD=RELEASE` from the
    command line.

6.  (Optional) To boot Linux using a VirtioBlock file-system, the command line
485
486
    passed from EDK2 to the Linux kernel must be modified as described in the
    "Obtaining a root file-system" section below.
487

488
7.  (Optional) If legacy GICv2 locations are used, the EDK2 platform description
489
490
    must be updated. This is required as EDK2 does not support probing for the
    GIC location. To do this, first clean the EDK2 build directory.
491

492
493
494
        make -f ArmPlatformPkg/Scripts/Makefile EDK2_ARCH=AARCH64          \
        EDK2_DSC=ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc \
        EDK2_TOOLCHAIN=ARMGCC clean
495

496
    Then rebuild EDK2 as described in step 3, using the following flag:
497

498
499
500
501
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
502

503

504
### Obtaining a Linux kernel
505

506
507
Preparing a Linux kernel for use on the FVPs can be done as follows
(GICv2 support only):
508
509
510
511
512

1.  Clone Linux:

        git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

513
    Not all required features are available in the kernel mainline yet. These
514
    can be obtained from the ARM-software Linux repository instead:
515
516

        cd linux
517
518
        git remote add -f --tags arm-software https://github.com/ARM-software/linux.git
        git checkout --detach 1.1-Juno
519
520
521
522
523
524
525

2.  Build with the Linaro GCC tools.

        # in linux/
        make mrproper
        make ARCH=arm64 defconfig

526
527
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf- \
        make -j6 ARCH=arm64
528

529
530
531
532
533
The compiled Linux image will now be found at `arch/arm64/boot/Image`.


6.  Preparing the images to run on FVP
--------------------------------------
534

535
### Obtaining the Flattened Device Trees
536
537

Depending on the FVP configuration and Linux configuration used, different
538
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
539
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
540
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
541
and MMC support, and has only one CPU cluster.
542
543
544
545

*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
546
    Base memory map configuration.
547
548
549

*   `fvp-base-gicv2legacy-psci.dtb`

550
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
551
552
553

*   `fvp-base-gicv3-psci.dtb`

554
555
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
556

557
558
559
560
561
562
563
564
565
566
567
568
569
570
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.


571
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
572
is launched. Alternatively a symbolic link may be used.
573

574
575
576
577
578
### Preparing the kernel image

Copy the kernel image file `arch/arm64/boot/Image` to the directory from which
the FVP is launched. Alternatively a symbolic link may be used.

579
### Obtaining a root file-system
580
581
582
583
584

To prepare a Linaro LAMP based Open Embedded file-system, the following
instructions can be used as a guide. The file-system can be provided to Linux
via VirtioBlock or as a RAM-disk. Both methods are described below.

585
#### Prepare VirtioBlock
586
587
588
589
590

To prepare a VirtioBlock file-system, do the following:

1.  Download and unpack the disk image.

591
    NOTE: The unpacked disk image grows to 3 GiB in size.
592

593
594
        wget http://releases.linaro.org/14.07/openembedded/aarch64/vexpress64-openembedded_lamp-armv8-gcc-4.9_20140727-682.img.gz
        gunzip vexpress64-openembedded_lamp-armv8-gcc-4.9_20140727-682.img.gz
595
596
597
598
599
600
601
602
603

2.  Make sure the Linux kernel has Virtio support enabled using
    `make ARCH=arm64 menuconfig`.

        Device Drivers  ---> Virtio drivers  ---> <*> Platform bus driver for memory mapped virtio devices
        Device Drivers  ---> [*] Block devices  --->  <*> Virtio block driver
        File systems    ---> <*> The Extended 4 (ext4) filesystem

    If some of these configurations are missing, enable them, save the kernel
604
605
    configuration, then rebuild the kernel image using the instructions
    provided in the section "Obtaining a Linux kernel".
606
607
608
609
610

3.  Change the Kernel command line to include `root=/dev/vda2`. This can either
    be done in the EDK2 boot menu or in the platform file. Editing the platform
    file and rebuilding EDK2 will make the change persist. To do this:

611
    1.  In EDK2, edit the following file:
612
613
614
615
616
617
618
619
620
621
622
623
624
625

            ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc

    2.  Add `root=/dev/vda2` to:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootArgument|"<Other default options>"

    3.  Remove the entry:

            gArmPlatformTokenSpaceGuid.PcdDefaultBootInitrdPath|""

    4.  Rebuild EDK2 (see "Obtaining UEFI" section above).

4.  The file-system image file should be provided to the model environment by
626
    passing it the correct command line option. In the FVPs the following
627
    option should be provided in addition to the ones described in the
628
    "Running the software on FVP" section below.
629
630
631
632

    NOTE: A symbolic link to this file cannot be used with the FVP; the path
    to the real file must be provided.

633
    On the Base FVPs:
634

635
        -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
636

637
    On the Foundation FVP:
638

639
        --block-device="<path-to>/<file-system-image>"
640

641
642
643
5.  Ensure that the FVP doesn't output any error messages. If the following
    error message is displayed:

644
        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!
645
646
647
648
649

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.

650
#### Prepare RAM-disk
651

652
To prepare a RAM-disk root file-system, do the following:
653
654
655

1.  Download the file-system image:

656
        wget http://releases.linaro.org/14.07/openembedded/aarch64/linaro-image-lamp-genericarmv8-20140727-701.rootfs.tar.gz
657
658
659
660
661
662

2.  Modify the Linaro image:

        # Prepare for use as RAM-disk. Normally use MMC, NFS or VirtioBlock.
        # Be careful, otherwise you could damage your host file-system.
        mkdir tmp; cd tmp
663
        sudo sh -c "zcat ../linaro-image-lamp-genericarmv8-20140727-701.rootfs.tar.gz | cpio -id"
664
665
666
667
668
669
        sudo ln -s sbin/init .
        sudo sh -c "echo 'devtmpfs /dev devtmpfs mode=0755,nosuid 0 0' >> etc/fstab"
        sudo sh -c "find . | cpio --quiet -H newc -o | gzip -3 -n > ../filesystem.cpio.gz"
        cd ..

3.  Copy the resultant `filesystem.cpio.gz` to the directory where the FVP is
670
    launched from. Alternatively a symbolic link may be used.
671
672


673
674
7.  Running the software on FVP
-------------------------------
675

676
This version of the ARM Trusted Firmware has been tested on the following ARM
677
678
FVPs (64-bit versions only).

679
680
681
682
683
684
685
686
*   `Foundation_v8` (Version 2.1, Build 9.0.24)
*   `FVP_Base_AEMv8A-AEMv8A` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 5.8, Build 0.8.5802)
*   `FVP_Base_Cortex-A57x2-A53x4` (Version 5.8, Build 0.8.5802)

NOTE: The build numbers quoted above are those reported by launching the FVP
with the `--version` parameter.
687
688
689

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
690

691
692
NOTE: The Foundation FVP does not provide a debugger interface.

693
694
695
696
Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the
ARM Trusted Firmware and normal world software behavior is provided below.

697
698
699
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

700
701

### Running on the Foundation FVP with reset to BL1 entrypoint
702
703
704
705
706
707
708

The following `Foundation_v8` parameters should be used to boot Linux with
4 CPUs using the ARM Trusted Firmware.

NOTE: Using the `--block-device` parameter is not necessary if a Linux RAM-disk
file-system is used (see the "Obtaining a File-system" section above).

709
710
711
712
NOTE: The `--data="<path to FIP binary>"@0x8000000` parameter is used to load a
Firmware Image Package at the start of NOR FLASH0 (see the "Building the
Trusted Firmware" section above).

713
    <path-to>/Foundation_v8                   \
714
    --cores=4                                 \
715
    --secure-memory                           \
716
717
    --visualization                           \
    --gicv3                                   \
718
719
720
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
721

722
723
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
724
725
726
727
728
emulation mode.

The memory mapped addresses `0x0` and `0x8000000` correspond to the start of
trusted ROM and NOR FLASH0 respectively.

729
### Notes regarding Base FVP configuration options
730

731
732
Please refer to these notes in the subsequent "Running on the Base FVP"
sections.
733

734
735
736
1.  The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
    Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
    section above).
737

738
739
740
2.  Using `cache_state_modelled=1` makes booting very slow. The software will
    still work (and run much faster) without this option but this will hide any
    cache maintenance defects in the software.
741

742
743
744
3.  Using the `-C bp.virtioblockdevice.image_path` parameter is not necessary
    if a Linux RAM-disk file-system is used (see the "Obtaining a root
    file-system" section above).
745

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
4.  Setting the `-C bp.secure_memory` parameter to `1` is only supported on
    Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
    supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
    instructs the FVP to provide some helpful information if a secure memory
    violation occurs.

5.  This and the following notes only apply when the firmware is built with
    the `RESET_TO_BL31` option.

    The `--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>`
    parameter is used to load bootloader images into Base FVP memory (see the
    "Building the Trusted Firmware" section above). The base addresses used
    should match the image base addresses in `platform_def.h` used while linking
    the images. The BL3-2 image is only needed if BL3-1 has been built to expect
    a Secure-EL1 Payload.

6.  The `-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>` parameter, where
    X and Y are the cluster and CPU numbers respectively, is used to set the
    reset vector for each core.

7.  Changing the default value of `FVP_SHARED_DATA_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl31-binary>"@<base-address-of-bl31>` and
    `-C cluster<X>.cpu<X>.RVBAR=@<base-address-of-bl31>`, to the new value of
    `BL31_BASE` in `platform_def.h`.

8.  Changing the default value of `FVP_TSP_RAM_LOCATION` will also require
    changing the value of
    `--data="<path-to><bl32-binary>"@<base-address-of-bl32>` to the new value of
    `BL32_BASE` in `platform_def.h`.
776

777
778
779
780
781
782
783
784

### Running on the AEMv8 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
785

786
787
    <path-to>/FVP_Base_AEMv8A-AEMv8A                       \
    -C pctl.startup=0.0.0.0                                \
788
789
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
790
791
792
793
794
795
    -C cluster0.NUM_CORES=4                                \
    -C cluster1.NUM_CORES=4                                \
    -C cache_state_modelled=1                              \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
796

797
798
799
800
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
801
802
803
804

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

805
806
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                  \
    -C pctl.startup=0.0.0.0                                \
807
808
    -C bp.secure_memory=1                                  \
    -C bp.tzc_400.diagnostics=1                            \
809
810
811
812
    -C cache_state_modelled=1                              \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>" \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"      \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
813

814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
### Running on the AEMv8 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cluster0.NUM_CORES=4                                      \
    -C cluster1.NUM_CORES=4                                      \
    -C cache_state_modelled=1                                    \
829
830
831
832
833
834
835
836
837
838
    -C cluster0.cpu0.RVBAR=0x04023000                            \
    -C cluster0.cpu1.RVBAR=0x04023000                            \
    -C cluster0.cpu2.RVBAR=0x04023000                            \
    -C cluster0.cpu3.RVBAR=0x04023000                            \
    -C cluster1.cpu0.RVBAR=0x04023000                            \
    -C cluster1.cpu1.RVBAR=0x04023000                            \
    -C cluster1.cpu2.RVBAR=0x04023000                            \
    -C cluster1.cpu3.RVBAR=0x04023000                            \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04023000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000    \
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

### Running on the Cortex-A57-A53 Base FVP with reset to BL3-1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cache_state_modelled=1                                    \
855
856
857
858
859
860
861
862
863
864
    -C cluster0.cpu0.RVBARADDR=0x04023000                        \
    -C cluster0.cpu1.RVBARADDR=0x04023000                        \
    -C cluster0.cpu2.RVBARADDR=0x04023000                        \
    -C cluster0.cpu3.RVBARADDR=0x04023000                        \
    -C cluster1.cpu0.RVBARADDR=0x04023000                        \
    -C cluster1.cpu1.RVBARADDR=0x04023000                        \
    -C cluster1.cpu2.RVBARADDR=0x04023000                        \
    -C cluster1.cpu3.RVBARADDR=0x04023000                        \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04023000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000    \
865
866
867
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

868
869
870
### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
871
872
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
873
874
875
876
877
878

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

879
The AEMv8 Base FVP can be configured to support GICv2 at addresses
880
881
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
882
883
884
885
886
887

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

888
889
890
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
891
892
893

*   `SYS_ID.Build[15:12]`

894
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
895
    default value on the Base FVPs.
896
897
898

*   `SYS_ID.Build[15:12]`

899
900
901
902
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
903

904
NOTE: If the legacy VE GIC memory map is used, then the corresponding FDT and
905
BL3-3 images should be used.
906

907
908
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

909
910
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
911

912
913
    <path-to>/Foundation_v8                   \
    --cores=4                                 \
914
    --secure-memory                           \
915
916
917
918
919
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
920
921
922

Explicit configuration of the `SYS_ID` register is not required.

923
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
924

925
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
926
927
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
928
929
930
931
932
933
934
935
936
937
938
939
940
941

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
942
    -C bp.variant=0x0
943

944
945
946
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
947
948


949
950
951
952
953
954
955
8.  Preparing the images to run on Juno
---------------------------------------

### Preparing Trusted Firmware images

The Juno platform requires a BL3-0 image to boot up. This image contains the
runtime firmware that runs on the SCP (System Control Processor). It can be
Dan Handley's avatar
Dan Handley committed
956
downloaded from [this ARM website] [SCP download] (requires registration).
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

Rebuild the Trusted Firmware specifying the BL3-0 image. Refer to the section
"Building the Trusted Firmware". Alternatively, the FIP image can be updated
manually with the BL3-0 image:

    fip_create --dump --bl30 <path-to>/<bl30-binary> <path-to>/<FIP-binary>

### Obtaining the Flattened Device Tree

Juno's device tree blob is built along with the kernel. It is located in:

    <path-to-linux>/arch/arm64/boot/dts/juno.dtb

### Deploying a root filesystem on a USB mass storage device

1.  Format the partition on the USB mass storage as ext4 filesystem.

    A 2GB or larger USB mass storage device is required. If another filesystem
    type is preferred then support needs to be enabled in the kernel. For
    example, if the USB mass storage corresponds to /dev/sdb device on your
    computer, use the following command to format partition 1 as ext4:

        sudo mkfs.ext4 /dev/sdb1

    Note: Please be cautious with this command as it could format your hard
    drive instead if you specify the wrong device.

2.  Mount the USB mass storage on the computer (if not done automatically):

        sudo mount /dev/sdb1 /media/usb_storage

    where '/media/usb_storage' corresponds to the mount point (the directory
    must exist prior to using the mount command).

3.  Download the rootfs specified in section "Prepare RAM-disk" and extract the
    files as root user onto the formatted partition:

        sudo tar zxf <linaro-image>.tar.gz -C /media/usb_storage/

    Note: It is not necessary to modify the Linaro image as described in that
    section since we are not using a RAM-disk.

5.  Unmount the USB mass storage:

        sudo umount /media/usb_storage


9.  Running the software on Juno
--------------------------------

The steps to install and run the binaries on Juno are as follows:

1.  Connect a serial cable to the UART0 port (the top UART port on the back
    panel). The UART settings are 115200 bauds, 8 bits data, no parity, 1 stop
    bit.

2.  Mount the Juno board storage via the CONFIG USB port

    This is the only USB type B port on the board, labelled DBG_USB and located
    on the back panel next to the ON/OFF and HW RESET buttons. Plug a type B USB
    cable into this port on the Juno board and plug the other end into a host
    PC, and then issue the following command in the UART0 session:

        Cmd> usb_on

    If the board doesn't show the Cmd> prompt then press the black HW RESET
    button once. Once the Juno board storage is detected by your PC, mount it
    (if not automatically done by your operating system).

        mount /dev/sdbX /media/JUNO

    For the rest of the installation instructions, we will assume that the Juno
    board storage has been mounted under the /media/JUNO directory.

3.  Copy the files obtained from the build process into /media/JUNO/SOFTWARE:

        bl1.bin
        fip.bin
        Image
        juno.dtb

4.  Umount the Juno board storage

        umount /media/JUNO

5.  Reboot the board. In the UART0 session, type:

        Cmd> reboot


1047
1048
- - - - - - - - - - - - - - - - - - - - - - - - - -

1049
_Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved._
1050
1051


1052
[Firmware Design]:  ./firmware-design.md
1053

1054
[ARM FVP website]:         http://www.arm.com/fvp
Dan Handley's avatar
Dan Handley committed
1055
[SCP download]:            https://silver.arm.com/download/download.tm?pv=1764630
1056
1057
1058
[Linaro Toolchain]:        http://releases.linaro.org/14.07/components/toolchain/binaries/
[EDK2]:                    http://github.com/tianocore/edk2
[DS-5]:                    http://www.arm.com/products/tools/software-tools/ds-5/index.php