xlat_tables_common.c 11.4 KB
Newer Older
1
/*
2
 * Copyright (c) 2016-2018, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
7
8
9
10
 */

#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <cassert.h>
11
#include <common_def.h>
12
13
14
#include <debug.h>
#include <platform_def.h>
#include <string.h>
15
#include <types.h>
16
#include <utils.h>
17
#include <xlat_tables.h>
18
#include "xlat_tables_private.h"
19
20
21
22
23
24
25

#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
#define LVL0_SPACER ""
#define LVL1_SPACER "  "
#define LVL2_SPACER "    "
#define LVL3_SPACER "      "
#define get_level_spacer(level)		\
26
27
28
			(((level) == U(0)) ? LVL0_SPACER : \
			(((level) == U(1)) ? LVL1_SPACER : \
			(((level) == U(2)) ? LVL2_SPACER : LVL3_SPACER)))
29
30
31
32
33
#define debug_print(...) tf_printf(__VA_ARGS__)
#else
#define debug_print(...) ((void)0)
#endif

34
#define UNSET_DESC	~0ULL
35
36
37
38

static uint64_t xlat_tables[MAX_XLAT_TABLES][XLAT_TABLE_ENTRIES]
			__aligned(XLAT_TABLE_SIZE) __section("xlat_table");

39
static unsigned int next_xlat;
40
41
42
static unsigned long long xlat_max_pa;
static uintptr_t xlat_max_va;

43
static uint64_t execute_never_mask;
44
static uint64_t ap1_mask;
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/*
 * Array of all memory regions stored in order of ascending base address.
 * The list is terminated by the first entry with size == 0.
 */
static mmap_region_t mmap[MAX_MMAP_REGIONS + 1];


void print_mmap(void)
{
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
	debug_print("mmap:\n");
	mmap_region_t *mm = mmap;
	while (mm->size) {
		debug_print(" VA:%p  PA:0x%llx  size:0x%zx  attr:0x%x\n",
				(void *)mm->base_va, mm->base_pa,
				mm->size, mm->attr);
		++mm;
	};
	debug_print("\n");
#endif
}

void mmap_add_region(unsigned long long base_pa, uintptr_t base_va,
69
		     size_t size, unsigned int attr)
70
71
72
{
	mmap_region_t *mm = mmap;
	mmap_region_t *mm_last = mm + ARRAY_SIZE(mmap) - 1;
73
74
	unsigned long long end_pa = base_pa + size - 1;
	uintptr_t end_va = base_va + size - 1;
75
76
77
78
79
80
81
82

	assert(IS_PAGE_ALIGNED(base_pa));
	assert(IS_PAGE_ALIGNED(base_va));
	assert(IS_PAGE_ALIGNED(size));

	if (!size)
		return;

83
84
85
	assert(base_pa < end_pa); /* Check for overflows */
	assert(base_va < end_va);

86
87
88
89
90
	assert((base_va + (uintptr_t)size - (uintptr_t)1) <=
					(PLAT_VIRT_ADDR_SPACE_SIZE - 1));
	assert((base_pa + (unsigned long long)size - 1ULL) <=
					(PLAT_PHY_ADDR_SPACE_SIZE - 1));

91
#if ENABLE_ASSERTIONS
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

	/* Check for PAs and VAs overlaps with all other regions */
	for (mm = mmap; mm->size; ++mm) {

		uintptr_t mm_end_va = mm->base_va + mm->size - 1;

		/*
		 * Check if one of the regions is completely inside the other
		 * one.
		 */
		int fully_overlapped_va =
			((base_va >= mm->base_va) && (end_va <= mm_end_va)) ||
			((mm->base_va >= base_va) && (mm_end_va <= end_va));

		/*
		 * Full VA overlaps are only allowed if both regions are
		 * identity mapped (zero offset) or have the same VA to PA
		 * offset. Also, make sure that it's not the exact same area.
		 */
		if (fully_overlapped_va) {
			assert((mm->base_va - mm->base_pa) ==
			       (base_va - base_pa));
			assert((base_va != mm->base_va) || (size != mm->size));
		} else {
			/*
			 * If the regions do not have fully overlapping VAs,
			 * then they must have fully separated VAs and PAs.
			 * Partial overlaps are not allowed
			 */

			unsigned long long mm_end_pa =
						     mm->base_pa + mm->size - 1;

			int separated_pa =
				(end_pa < mm->base_pa) || (base_pa > mm_end_pa);
			int separated_va =
				(end_va < mm->base_va) || (base_va > mm_end_va);

			assert(separated_va && separated_pa);
		}
	}

	mm = mmap; /* Restore pointer to the start of the array */

136
#endif /* ENABLE_ASSERTIONS */
137

138
139
140
141
	/* Find correct place in mmap to insert new region */
	while (mm->base_va < base_va && mm->size)
		++mm;

142
143
144
145
146
147
148
149
150
151
152
153
154
155
	/*
	 * If a section is contained inside another one with the same base
	 * address, it must be placed after the one it is contained in:
	 *
	 * 1st |-----------------------|
	 * 2nd |------------|
	 * 3rd |------|
	 *
	 * This is required for mmap_region_attr() to get the attributes of the
	 * small region correctly.
	 */
	while ((mm->base_va == base_va) && (mm->size > size))
		++mm;

156
157
158
159
160
161
162
163
164
165
166
	/* Make room for new region by moving other regions up by one place */
	memmove(mm + 1, mm, (uintptr_t)mm_last - (uintptr_t)mm);

	/* Check we haven't lost the empty sentinal from the end of the array */
	assert(mm_last->size == 0);

	mm->base_pa = base_pa;
	mm->base_va = base_va;
	mm->size = size;
	mm->attr = attr;

167
168
169
170
	if (end_pa > xlat_max_pa)
		xlat_max_pa = end_pa;
	if (end_va > xlat_max_va)
		xlat_max_va = end_va;
171
172
173
174
175
176
177
178
179
180
}

void mmap_add(const mmap_region_t *mm)
{
	while (mm->size) {
		mmap_add_region(mm->base_pa, mm->base_va, mm->size, mm->attr);
		++mm;
	}
}

181
182
static uint64_t mmap_desc(unsigned int attr, unsigned long long addr_pa,
			  unsigned int level)
183
{
184
	uint64_t desc;
185
186
	int mem_type;

187
188
189
	/* Make sure that the granularity is fine enough to map this address. */
	assert((addr_pa & XLAT_BLOCK_MASK(level)) == 0);

190
	desc = addr_pa;
191
192
193
194
195
	/*
	 * There are different translation table descriptors for level 3 and the
	 * rest.
	 */
	desc |= (level == XLAT_TABLE_LEVEL_MAX) ? PAGE_DESC : BLOCK_DESC;
196
197
	desc |= (attr & MT_NS) ? LOWER_ATTRS(NS) : 0;
	desc |= (attr & MT_RW) ? LOWER_ATTRS(AP_RW) : LOWER_ATTRS(AP_RO);
198
199
200
201
	/*
	 * Always set the access flag, as this library assumes access flag
	 * faults aren't managed.
	 */
202
	desc |= LOWER_ATTRS(ACCESS_FLAG);
203
	desc |= ap1_mask;
204

205
206
207
208
209
210
211
212
213
214
	/*
	 * Deduce shareability domain and executability of the memory region
	 * from the memory type.
	 *
	 * Data accesses to device memory and non-cacheable normal memory are
	 * coherent for all observers in the system, and correspondingly are
	 * always treated as being Outer Shareable. Therefore, for these 2 types
	 * of memory, it is not strictly needed to set the shareability field
	 * in the translation tables.
	 */
215
	mem_type = MT_TYPE(attr);
216
	if (mem_type == MT_DEVICE) {
217
		desc |= LOWER_ATTRS(ATTR_DEVICE_INDEX | OSH);
218
219
220
221
222
223
		/*
		 * Always map device memory as execute-never.
		 * This is to avoid the possibility of a speculative instruction
		 * fetch, which could be an issue if this memory region
		 * corresponds to a read-sensitive peripheral.
		 */
224
225
		desc |= execute_never_mask;

226
227
228
	} else { /* Normal memory */
		/*
		 * Always map read-write normal memory as execute-never.
229
230
231
232
		 * This library assumes that it is used by software that does
		 * not self-modify its code, therefore R/W memory is reserved
		 * for data storage, which must not be executable.
		 *
233
		 * Note that setting the XN bit here is for consistency only.
234
		 * The function that enables the MMU sets the SCTLR_ELx.WXN bit,
235
236
237
		 * which makes any writable memory region to be treated as
		 * execute-never, regardless of the value of the XN bit in the
		 * translation table.
238
239
240
		 *
		 * For read-only memory, rely on the MT_EXECUTE/MT_EXECUTE_NEVER
		 * attribute to figure out the value of the XN bit.
241
		 */
242
243
244
		if ((attr & MT_RW) || (attr & MT_EXECUTE_NEVER)) {
			desc |= execute_never_mask;
		}
245
246
247
248
249
250
251

		if (mem_type == MT_MEMORY) {
			desc |= LOWER_ATTRS(ATTR_IWBWA_OWBWA_NTR_INDEX | ISH);
		} else {
			assert(mem_type == MT_NON_CACHEABLE);
			desc |= LOWER_ATTRS(ATTR_NON_CACHEABLE_INDEX | OSH);
		}
252
253
254
255
256
257
	}

	debug_print((mem_type == MT_MEMORY) ? "MEM" :
		((mem_type == MT_NON_CACHEABLE) ? "NC" : "DEV"));
	debug_print(attr & MT_RW ? "-RW" : "-RO");
	debug_print(attr & MT_NS ? "-NS" : "-S");
258
	debug_print(attr & MT_EXECUTE_NEVER ? "-XN" : "-EXEC");
259
260
261
	return desc;
}

262
/*
263
264
265
266
267
268
269
 * Look for the innermost region that contains the area at `base_va` with size
 * `size`. Populate *attr with the attributes of this region.
 *
 * On success, this function returns 0.
 * If there are partial overlaps (meaning that a smaller size is needed) or if
 * the region can't be found in the given area, it returns -1. In this case the
 * value pointed by attr should be ignored by the caller.
270
 */
271
static int mmap_region_attr(mmap_region_t *mm, uintptr_t base_va,
272
			    size_t size, unsigned int *attr)
273
{
274
	/* Don't assume that the area is contained in the first region */
275
	int ret = -1;
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

	/*
	 * Get attributes from last (innermost) region that contains the
	 * requested area. Don't stop as soon as one region doesn't contain it
	 * because there may be other internal regions that contain this area:
	 *
	 * |-----------------------------1-----------------------------|
	 * |----2----|     |-------3-------|    |----5----|
	 *                   |--4--|
	 *
	 *                   |---| <- Area we want the attributes of.
	 *
	 * In this example, the area is contained in regions 1, 3 and 4 but not
	 * in region 2. The loop shouldn't stop at region 2 as inner regions
	 * have priority over outer regions, it should stop at region 5.
	 */
	for (;; ++mm) {
293
294

		if (!mm->size)
295
			return ret; /* Reached end of list */
296

297
		if (mm->base_va > base_va + size - 1)
298
			return ret; /* Next region is after area so end */
299

300
		if (mm->base_va + mm->size - 1 < base_va)
301
302
			continue; /* Next region has already been overtaken */

303
		if (!ret && mm->attr == *attr)
304
305
306
			continue; /* Region doesn't override attribs so skip */

		if (mm->base_va > base_va ||
307
			mm->base_va + mm->size - 1 < base_va + size - 1)
308
			return -1; /* Region doesn't fully cover our area */
309

310
311
		*attr = mm->attr;
		ret = 0;
312
	}
313
	return ret;
314
315
316
317
318
}

static mmap_region_t *init_xlation_table_inner(mmap_region_t *mm,
					uintptr_t base_va,
					uint64_t *table,
319
					unsigned int level)
320
{
321
	assert(level >= XLAT_TABLE_LEVEL_MIN && level <= XLAT_TABLE_LEVEL_MAX);
322

323
324
325
326
327
	unsigned int level_size_shift =
		       L0_XLAT_ADDRESS_SHIFT - level * XLAT_TABLE_ENTRIES_SHIFT;
	u_register_t level_size = (u_register_t)1 << level_size_shift;
	u_register_t level_index_mask =
		((u_register_t)XLAT_TABLE_ENTRIES_MASK) << level_size_shift;
328
329
330
331
332
333
334
335
336

	debug_print("New xlat table:\n");

	do  {
		uint64_t desc = UNSET_DESC;

		if (!mm->size) {
			/* Done mapping regions; finish zeroing the table */
			desc = INVALID_DESC;
337
		} else if (mm->base_va + mm->size - 1 < base_va) {
338
			/* This area is after the region so get next region */
339
340
341
342
			++mm;
			continue;
		}

343
344
		debug_print("%s VA:%p size:0x%llx ", get_level_spacer(level),
			(void *)base_va, (unsigned long long)level_size);
345

346
		if (mm->base_va > base_va + level_size - 1) {
347
			/* Next region is after this area. Nothing to map yet */
348
			desc = INVALID_DESC;
349
350
		/* Make sure that the current level allows block descriptors */
		} else if (level >= XLAT_BLOCK_LEVEL_MIN) {
351
352
353
354
355
			/*
			 * Try to get attributes of this area. It will fail if
			 * there are partially overlapping regions. On success,
			 * it will return the innermost region's attributes.
			 */
356
			unsigned int attr;
357
358
359
			int r = mmap_region_attr(mm, base_va, level_size, &attr);

			if (!r) {
360
361
362
				desc = mmap_desc(attr,
					base_va - mm->base_va + mm->base_pa,
					level);
363
			}
364
365
366
367
368
369
		}

		if (desc == UNSET_DESC) {
			/* Area not covered by a region so need finer table */
			uint64_t *new_table = xlat_tables[next_xlat++];
			assert(next_xlat <= MAX_XLAT_TABLES);
370
			desc = TABLE_DESC | (uintptr_t)new_table;
371
372
373
374
375
376
377
378
379
380

			/* Recurse to fill in new table */
			mm = init_xlation_table_inner(mm, base_va,
						new_table, level+1);
		}

		debug_print("\n");

		*table++ = desc;
		base_va += level_size;
381
382
	} while ((base_va & level_index_mask) &&
		 (base_va - 1 < PLAT_VIRT_ADDR_SPACE_SIZE - 1));
383
384
385
386
387

	return mm;
}

void init_xlation_table(uintptr_t base_va, uint64_t *table,
388
			unsigned int level, uintptr_t *max_va,
389
390
			unsigned long long *max_pa)
{
391
392
393
394
395
396
397
398
399
400
401
	int el = xlat_arch_current_el();

	execute_never_mask = xlat_arch_get_xn_desc(el);

	if (el == 3) {
		ap1_mask = LOWER_ATTRS(AP_ONE_VA_RANGE_RES1);
	} else {
		assert(el == 1);
		ap1_mask = 0;
	}

402
403
404
405
	init_xlation_table_inner(mmap, base_va, table, level);
	*max_va = xlat_max_va;
	*max_pa = xlat_max_pa;
}