context_mgmt.c 19.3 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
Antonio Nino Diaz's avatar
Antonio Nino Diaz committed
2
 * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
Achin Gupta's avatar
Achin Gupta committed
5
6
 */

7
#include <amu.h>
8
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
9
#include <arch_helpers.h>
10
#include <assert.h>
Achin Gupta's avatar
Achin Gupta committed
11
#include <bl_common.h>
12
#include <context.h>
Achin Gupta's avatar
Achin Gupta committed
13
#include <context_mgmt.h>
14
#include <interrupt_mgmt.h>
15
#include <mpam.h>
16
#include <platform.h>
17
#include <platform_def.h>
18
#include <pubsub_events.h>
Antonio Nino Diaz's avatar
Antonio Nino Diaz committed
19
#include <smccc_helpers.h>
20
#include <spe.h>
21
#include <string.h>
David Cunado's avatar
David Cunado committed
22
#include <sve.h>
23
#include <utils.h>
Achin Gupta's avatar
Achin Gupta committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
39
void cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
40
41
42
43
44
45
46
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

47
/*******************************************************************************
48
 * The following function initializes the cpu_context 'ctx' for
49
50
51
52
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
53
 * of the entry_point_info.
54
55
 *
 * The EE and ST attributes are used to configure the endianess and secure
56
 * timer availability for the new execution context.
57
58
59
60
61
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
62
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
63
{
64
	unsigned int security_state;
65
	uint32_t scr_el3, pmcr_el0;
66
67
	el3_state_t *state;
	gp_regs_t *gp_regs;
68
	unsigned long sctlr_elx, actlr_elx;
69
70
71

	assert(ctx);

72
73
	security_state = GET_SECURITY_STATE(ep->h.attr);

74
	/* Clear any residual register values from the context */
75
	zeromem(ctx, sizeof(*ctx));
76
77

	/*
78
79
80
81
82
83
84
	 * SCR_EL3 was initialised during reset sequence in macro
	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
	 * affect the next EL.
	 *
	 * The following fields are initially set to zero and then updated to
	 * the required value depending on the state of the SPSR_EL3 and the
	 * Security state and entrypoint attributes of the next EL.
85
86
87
88
	 */
	scr_el3 = read_scr();
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);
89
90
91
	/*
	 * SCR_NS: Set the security state of the next EL.
	 */
92
93
	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;
94
95
96
97
	/*
	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
	 *  Exception level as specified by SPSR.
	 */
98
99
	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;
100
101
102
103
104
	/*
	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
	 *  Secure timer registers to EL3, from AArch64 state only, if specified
	 *  by the entrypoint attributes.
	 */
105
106
107
	if (EP_GET_ST(ep->h.attr))
		scr_el3 |= SCR_ST_BIT;

108
#ifndef HANDLE_EA_EL3_FIRST
109
110
111
112
113
	/*
	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
	 *  to EL3 when executing at a lower EL. When executing at EL3, External
	 *  Aborts are taken to EL3.
	 */
114
115
116
	scr_el3 &= ~SCR_EA_BIT;
#endif

117
118
119
120
121
#if FAULT_INJECTION_SUPPORT
	/* Enable fault injection from lower ELs */
	scr_el3 |= SCR_FIEN_BIT;
#endif

122
#ifdef IMAGE_BL31
123
	/*
124
125
	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
	 *  indicated by the interrupt routing model for BL31.
126
	 */
127
	scr_el3 |= get_scr_el3_from_routing_model(security_state);
128
#endif
129
130

	/*
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
	 * next mode is Hyp.
	 */
	if ((GET_RW(ep->spsr) == MODE_RW_64
	     && GET_EL(ep->spsr) == MODE_EL2)
	    || (GET_RW(ep->spsr) != MODE_RW_64
		&& GET_M32(ep->spsr) == MODE32_hyp)) {
		scr_el3 |= SCR_HCE_BIT;
	}

	/*
	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
	 * execution state setting all fields rather than relying of the hw.
	 * Some fields have architecturally UNKNOWN reset values and these are
	 * set to zero.
147
	 *
148
	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
149
	 *
150
151
	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
	 *  required by PSCI specification)
152
153
	 */
	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
154
155
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
156
157
	else {
		/*
158
159
160
161
162
163
164
165
166
167
168
		 * If the target execution state is AArch32 then the following
		 * fields need to be set.
		 *
		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
169
		 */
170
171
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
172
173
	}

174
175
	/*
	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
176
	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
177
178
	 * are not part of the stored cpu_context.
	 */
179
180
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

181
182
183
184
185
186
187
188
189
190
	/*
	 * Base the context ACTLR_EL1 on the current value, as it is
	 * implementation defined. The context restore process will write
	 * the value from the context to the actual register and can cause
	 * problems for processor cores that don't expect certain bits to
	 * be zero.
	 */
	actlr_elx = read_actlr_el1();
	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
	if (security_state == SECURE) {
		/*
		 * Initialise PMCR_EL0 for secure context only, setting all
		 * fields rather than relying on hw. Some fields are
		 * architecturally UNKNOWN on reset.
		 *
		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
		 *
		 * PMCR_EL0.DP: Set to one so that the cycle counter,
		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
		 *
		 * PMCR_EL0.X: Set to zero to disable export of events.
		 *
		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
		 *  counts on every clock cycle.
		 */
		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
				| PMCR_EL0_DP_BIT)
				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
	}

215
216
217
218
219
220
221
222
223
224
225
226
227
228
	/* Populate EL3 state so that we've the right context before doing ERET */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

229
230
231
232
233
234
235
236
/*******************************************************************************
 * Enable architecture extensions on first entry to Non-secure world.
 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
 * it is zero.
 ******************************************************************************/
static void enable_extensions_nonsecure(int el2_unused)
{
#if IMAGE_BL31
237
238
239
#if ENABLE_SPE_FOR_LOWER_ELS
	spe_enable(el2_unused);
#endif
240
241
242
243

#if ENABLE_AMU
	amu_enable(el2_unused);
#endif
David Cunado's avatar
David Cunado committed
244
245
246
247

#if ENABLE_SVE_FOR_NS
	sve_enable(el2_unused);
#endif
248
249
250
251

#if ENABLE_MPAM_FOR_LOWER_ELS
	mpam_enable(el2_unused);
#endif
252
253
254
#endif
}

255
256
257
258
259
260
261
262
263
264
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
265
	cm_setup_context(ctx, ep);
266
267
268
269
270
271
272
273
274
275
276
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
277
	cm_setup_context(ctx, ep);
278
279
}

280
281
282
283
284
285
286
287
288
289
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
290
	uint32_t sctlr_elx, scr_el3, mdcr_el2;
291
	cpu_context_t *ctx = cm_get_context(security_state);
292
	int el2_unused = 0;
293
294
295
296
297
298
299
300
301

	assert(ctx);

	if (security_state == NON_SECURE) {
		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
		if (scr_el3 & SCR_HCE_BIT) {
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
						 CTX_SCTLR_EL1);
Ken Kuang's avatar
Ken Kuang committed
302
			sctlr_elx &= SCTLR_EE_BIT;
303
304
			sctlr_elx |= SCTLR_EL2_RES1;
			write_sctlr_el2(sctlr_elx);
305
		} else if (EL_IMPLEMENTED(2)) {
306
307
			el2_unused = 1;

308
309
310
311
312
313
314
315
316
317
			/*
			 * EL2 present but unused, need to disable safely.
			 * SCTLR_EL2 can be ignored in this case.
			 *
			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
			 * to zero so that Non-secure operations do not trap to
			 * EL2.
			 *
			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
			 */
318
319
			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
			/*
			 * Initialise CPTR_EL2 setting all fields rather than
			 * relying on the hw. All fields have architecturally
			 * UNKNOWN reset values.
			 *
			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
			 *  accesses to the CPACR_EL1 or CPACR from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
			 *  register accesses to the trace registers from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
			 *  to SIMD and floating-point functionality from both
			 *  Execution states do not trap to EL2.
			 */
			write_cptr_el2(CPTR_EL2_RESET_VAL &
					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
					| CPTR_EL2_TFP_BIT));
340

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
			/*
			 * Initiliase CNTHCTL_EL2. All fields are
			 * architecturally UNKNOWN on reset and are set to zero
			 * except for field(s) listed below.
			 *
			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
			 *  physical timer registers.
			 *
			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
			 *  physical counter registers.
			 */
			write_cnthctl_el2(CNTHCTL_RESET_VAL |
						EL1PCEN_BIT | EL1PCTEN_BIT);
356

357
358
359
360
			/*
			 * Initialise CNTVOFF_EL2 to zero as it resets to an
			 * architecturally UNKNOWN value.
			 */
361
362
			write_cntvoff_el2(0);

363
364
365
366
			/*
			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
			 * MPIDR_EL1 respectively.
			 */
367
368
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
369
370

			/*
371
372
373
374
375
376
377
378
379
			 * Initialise VTTBR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
			 *  2 address translation is disabled, cache maintenance
			 *  operations depend on the VMID.
			 *
			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
			 *  translation is disabled.
380
			 */
381
382
383
384
			write_vttbr_el2(VTTBR_RESET_VAL &
				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));

385
			/*
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
			 * Initialise MDCR_EL2, setting all fields rather than
			 * relying on hw. Some fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
			 *  EL1 System register accesses to the Debug ROM
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
			 *  System register accesses to the powerdown debug
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDA: Set to zero so that System register
			 *  accesses to the debug registers do not trap to EL2.
			 *
			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
			 *  are not routed to EL2.
			 *
			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
			 *  Monitors.
			 *
			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
			 *  EL1 accesses to all Performance Monitors registers
			 *  are not trapped to EL2.
			 *
			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
			 *  trapped to EL2.
			 *
			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
			 *  architecturally-defined reset value.
417
			 */
418
			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
419
420
421
422
423
424
					((read_pmcr_el0() & PMCR_EL0_N_BITS)
					>> PMCR_EL0_N_SHIFT)) &
					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
					| MDCR_EL2_TPMCR_BIT));
425
426
427

			write_mdcr_el2(mdcr_el2);

428
			/*
429
430
431
432
433
434
			 * Initialise HSTR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * HSTR_EL2.T<n>: Set all these fields to zero so that
			 *  Non-secure EL0 or EL1 accesses to System registers
			 *  do not trap to EL2.
435
			 */
436
			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
437
			/*
438
439
440
441
442
			 * Initialise CNTHP_CTL_EL2. All fields are
			 * architecturally UNKNOWN on reset.
			 *
			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
			 *  physical timer and prevent timer interrupts.
443
			 */
444
445
			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
						~(CNTHP_CTL_ENABLE_BIT));
446
		}
447
		enable_extensions_nonsecure(el2_unused);
448
449
	}

450
451
	cm_el1_sysregs_context_restore(security_state);
	cm_set_next_eret_context(security_state);
452
453
}

Achin Gupta's avatar
Achin Gupta committed
454
/*******************************************************************************
455
456
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
457
458
459
460
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
461
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
462

463
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
464
465
466
	assert(ctx);

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
467
468
469
470
471
472
473

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_exited_secure_world);
	else
		PUBLISH_EVENT(cm_exited_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
474
475
476
477
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
478
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
479

480
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
481
482
483
	assert(ctx);

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
484
485
486
487
488
489
490

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_entering_secure_world);
	else
		PUBLISH_EVENT(cm_entering_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
491
492
493
}

/*******************************************************************************
494
495
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
496
 ******************************************************************************/
497
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
498
{
499
500
	cpu_context_t *ctx;
	el3_state_t *state;
501

502
	ctx = cm_get_context(security_state);
503
504
	assert(ctx);

505
	/* Populate EL3 state so that ERET jumps to the correct entry */
506
507
508
509
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

510
/*******************************************************************************
511
512
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
513
 ******************************************************************************/
514
void cm_set_elr_spsr_el3(uint32_t security_state,
515
			uintptr_t entrypoint, uint32_t spsr)
516
{
517
518
	cpu_context_t *ctx;
	el3_state_t *state;
519

520
	ctx = cm_get_context(security_state);
521
522
523
524
525
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
526
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
527
528
}

529
530
531
532
533
534
535
536
537
538
539
540
541
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

542
	ctx = cm_get_context(security_state);
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
	assert(ctx);

	/* Ensure that the bit position is a valid one */
	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);

	/* Ensure that the 'value' is only a bit wide */
	assert(value <= 1);

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1 << bit_pos);
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

571
	ctx = cm_get_context(security_state);
572
573
574
575
576
577
578
	assert(ctx);

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	return read_ctx_reg(state, CTX_SCR_EL3);
}

579
580
581
582
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
583
584
585
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
586
	cpu_context_t *ctx;
587

588
	ctx = cm_get_context(security_state);
Achin Gupta's avatar
Achin Gupta committed
589
590
	assert(ctx);

591
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
592
}