mce.c 13.6 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
5
6
 */

7
8
9
10
#include <assert.h>
#include <errno.h>
#include <string.h>

11
12
#include <arch.h>
#include <arch_helpers.h>
13
14
#include <common/bl_common.h>
#include <common/debug.h>
15
16
#include <context.h>
#include <denver.h>
17
18
19
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/mmio.h>

20
#include <mce.h>
21
#include <mce_private.h>
22
23
#include <t18x_ari.h>
#include <tegra_def.h>
24
#include <tegra_platform.h>
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

/* NVG functions handlers */
static arch_mce_ops_t nvg_mce_ops = {
	.enter_cstate = nvg_enter_cstate,
	.update_cstate_info = nvg_update_cstate_info,
	.update_crossover_time = nvg_update_crossover_time,
	.read_cstate_stats = nvg_read_cstate_stats,
	.write_cstate_stats = nvg_write_cstate_stats,
	.call_enum_misc = ari_enumeration_misc,
	.is_ccx_allowed = nvg_is_ccx_allowed,
	.is_sc7_allowed = nvg_is_sc7_allowed,
	.online_core = nvg_online_core,
	.cc3_ctrl = nvg_cc3_ctrl,
	.update_reset_vector = ari_reset_vector_update,
	.roc_flush_cache = ari_roc_flush_cache,
	.roc_flush_cache_trbits = ari_roc_flush_cache_trbits,
	.roc_clean_cache = ari_roc_clean_cache,
	.read_write_mca = ari_read_write_mca,
	.update_ccplex_gsc = ari_update_ccplex_gsc,
44
	.enter_ccplex_state = ari_enter_ccplex_state,
45
46
	.read_write_uncore_perfmon = ari_read_write_uncore_perfmon,
	.misc_ccplex = ari_misc_ccplex
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
};

/* ARI functions handlers */
static arch_mce_ops_t ari_mce_ops = {
	.enter_cstate = ari_enter_cstate,
	.update_cstate_info = ari_update_cstate_info,
	.update_crossover_time = ari_update_crossover_time,
	.read_cstate_stats = ari_read_cstate_stats,
	.write_cstate_stats = ari_write_cstate_stats,
	.call_enum_misc = ari_enumeration_misc,
	.is_ccx_allowed = ari_is_ccx_allowed,
	.is_sc7_allowed = ari_is_sc7_allowed,
	.online_core = ari_online_core,
	.cc3_ctrl = ari_cc3_ctrl,
	.update_reset_vector = ari_reset_vector_update,
	.roc_flush_cache = ari_roc_flush_cache,
	.roc_flush_cache_trbits = ari_roc_flush_cache_trbits,
	.roc_clean_cache = ari_roc_clean_cache,
	.read_write_mca = ari_read_write_mca,
	.update_ccplex_gsc = ari_update_ccplex_gsc,
67
	.enter_ccplex_state = ari_enter_ccplex_state,
68
69
	.read_write_uncore_perfmon = ari_read_write_uncore_perfmon,
	.misc_ccplex = ari_misc_ccplex
70
71
};

72
typedef struct {
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
	uint32_t ari_base;
	arch_mce_ops_t *ops;
} mce_config_t;

/* Table to hold the per-CPU ARI base address and function handlers */
static mce_config_t mce_cfg_table[MCE_ARI_APERTURES_MAX] = {
	{
		/* A57 Core 0 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_0_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* A57 Core 1 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_1_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* A57 Core 2 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_2_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* A57 Core 3 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_3_OFFSET,
		.ops = &ari_mce_ops,
	},
	{
		/* D15 Core 0 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_4_OFFSET,
		.ops = &nvg_mce_ops,
	},
	{
		/* D15 Core 1 */
		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_5_OFFSET,
		.ops = &nvg_mce_ops,
	}
};

static uint32_t mce_get_curr_cpu_ari_base(void)
{
113
	uint64_t mpidr = read_mpidr();
114
115
	uint64_t cpuid = mpidr & MPIDR_CPU_MASK;
	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
116
117
118
119
120
121
122
123

	/*
	 * T186 has 2 CPU clusters, one with Denver CPUs and the other with
	 * ARM CortexA-57 CPUs. Each cluster consists of 4 CPUs and the CPU
	 * numbers start from 0. In order to get the proper arch_mce_ops_t
	 * struct, we have to convert the Denver CPU ids to the corresponding
	 * indices in the mce_ops_table array.
	 */
124
125
126
	if (impl == DENVER_IMPL) {
		cpuid |= 0x4U;
	}
127
128
129
130
131
132

	return mce_cfg_table[cpuid].ari_base;
}

static arch_mce_ops_t *mce_get_curr_cpu_ops(void)
{
133
	uint64_t mpidr = read_mpidr();
134
135
136
	uint64_t cpuid = mpidr & MPIDR_CPU_MASK;
	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) &
			MIDR_IMPL_MASK;
137
138
139
140
141
142
143
144

	/*
	 * T186 has 2 CPU clusters, one with Denver CPUs and the other with
	 * ARM CortexA-57 CPUs. Each cluster consists of 4 CPUs and the CPU
	 * numbers start from 0. In order to get the proper arch_mce_ops_t
	 * struct, we have to convert the Denver CPU ids to the corresponding
	 * indices in the mce_ops_table array.
	 */
145
146
147
	if (impl == DENVER_IMPL) {
		cpuid |= 0x4U;
	}
148
149
150
151
152
153
154

	return mce_cfg_table[cpuid].ops;
}

/*******************************************************************************
 * Common handler for all MCE commands
 ******************************************************************************/
155
int32_t mce_command_handler(uint64_t cmd, uint64_t arg0, uint64_t arg1,
156
157
			uint64_t arg2)
{
158
159
	const arch_mce_ops_t *ops;
	gp_regs_t *gp_regs = get_gpregs_ctx(cm_get_context(NON_SECURE));
160
161
	uint32_t cpu_ari_base;
	uint64_t ret64 = 0, arg3, arg4, arg5;
162
	int32_t ret = 0;
163

164
	assert(gp_regs != NULL);
165
166
167
168
169
170
171
172

	/* get a pointer to the CPU's arch_mce_ops_t struct */
	ops = mce_get_curr_cpu_ops();

	/* get the CPU's ARI base address */
	cpu_ari_base = mce_get_curr_cpu_ari_base();

	switch (cmd) {
173
	case (uint64_t)MCE_CMD_ENTER_CSTATE:
174
175
176
177
		ret = ops->enter_cstate(cpu_ari_base, arg0, arg1);

		break;

178
	case (uint64_t)MCE_CMD_UPDATE_CSTATE_INFO:
179
180
181
182
		/*
		 * get the parameters required for the update cstate info
		 * command
		 */
183
184
185
		arg3 = read_ctx_reg(gp_regs, CTX_GPREG_X4);
		arg4 = read_ctx_reg(gp_regs, CTX_GPREG_X5);
		arg5 = read_ctx_reg(gp_regs, CTX_GPREG_X6);
186
187
188
189
190

		ret = ops->update_cstate_info(cpu_ari_base, (uint32_t)arg0,
				(uint32_t)arg1, (uint32_t)arg2, (uint8_t)arg3,
				(uint32_t)arg4, (uint8_t)arg5);

191
192
193
		write_ctx_reg(gp_regs, CTX_GPREG_X4, (0ULL));
		write_ctx_reg(gp_regs, CTX_GPREG_X5, (0ULL));
		write_ctx_reg(gp_regs, CTX_GPREG_X6, (0ULL));
194
195
196

		break;

197
	case (uint64_t)MCE_CMD_UPDATE_CROSSOVER_TIME:
198
199
200
201
		ret = ops->update_crossover_time(cpu_ari_base, arg0, arg1);

		break;

202
	case (uint64_t)MCE_CMD_READ_CSTATE_STATS:
203
204
205
		ret64 = ops->read_cstate_stats(cpu_ari_base, arg0);

		/* update context to return cstate stats value */
206
207
		write_ctx_reg(gp_regs, CTX_GPREG_X1, (ret64));
		write_ctx_reg(gp_regs, CTX_GPREG_X2, (ret64));
208
209
210

		break;

211
	case (uint64_t)MCE_CMD_WRITE_CSTATE_STATS:
212
213
214
215
		ret = ops->write_cstate_stats(cpu_ari_base, arg0, arg1);

		break;

216
	case (uint64_t)MCE_CMD_IS_CCX_ALLOWED:
217
218
219
		ret = ops->is_ccx_allowed(cpu_ari_base, arg0, arg1);

		/* update context to return CCx status value */
220
		write_ctx_reg(gp_regs, CTX_GPREG_X1, (uint64_t)(ret));
221
222
223

		break;

224
	case (uint64_t)MCE_CMD_IS_SC7_ALLOWED:
225
226
227
		ret = ops->is_sc7_allowed(cpu_ari_base, arg0, arg1);

		/* update context to return SC7 status value */
228
229
		write_ctx_reg(gp_regs, CTX_GPREG_X1, (uint64_t)(ret));
		write_ctx_reg(gp_regs, CTX_GPREG_X3, (uint64_t)(ret));
230
231
232

		break;

233
	case (uint64_t)MCE_CMD_ONLINE_CORE:
234
235
236
237
		ret = ops->online_core(cpu_ari_base, arg0);

		break;

238
	case (uint64_t)MCE_CMD_CC3_CTRL:
239
240
241
242
		ret = ops->cc3_ctrl(cpu_ari_base, arg0, arg1, arg2);

		break;

243
	case (uint64_t)MCE_CMD_ECHO_DATA:
244
245
246
247
		ret64 = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_ECHO,
				arg0);

		/* update context to return if echo'd data matched source */
248
249
250
251
		write_ctx_reg(gp_regs, CTX_GPREG_X1, ((ret64 == arg0) ?
			      1ULL : 0ULL));
		write_ctx_reg(gp_regs, CTX_GPREG_X2, ((ret64 == arg0) ?
			      1ULL : 0ULL));
252
253
254

		break;

255
	case (uint64_t)MCE_CMD_READ_VERSIONS:
256
257
258
259
260
261
262
		ret64 = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_VERSION,
			arg0);

		/*
		 * version = minor(63:32) | major(31:0). Update context
		 * to return major and minor version number.
		 */
263
264
		write_ctx_reg(gp_regs, CTX_GPREG_X1, (ret64));
		write_ctx_reg(gp_regs, CTX_GPREG_X2, (ret64 >> 32ULL));
265
266
267

		break;

268
	case (uint64_t)MCE_CMD_ENUM_FEATURES:
269
		ret64 = ops->call_enum_misc(cpu_ari_base,
270
271
272
				TEGRA_ARI_MISC_FEATURE_LEAF_0, arg0);

		/* update context to return features value */
273
		write_ctx_reg(gp_regs, CTX_GPREG_X1, (ret64));
274
275
276

		break;

277
	case (uint64_t)MCE_CMD_ROC_FLUSH_CACHE_TRBITS:
278
279
280
281
		ret = ops->roc_flush_cache_trbits(cpu_ari_base);

		break;

282
	case (uint64_t)MCE_CMD_ROC_FLUSH_CACHE:
283
284
285
286
		ret = ops->roc_flush_cache(cpu_ari_base);

		break;

287
	case (uint64_t)MCE_CMD_ROC_CLEAN_CACHE:
288
289
290
291
		ret = ops->roc_clean_cache(cpu_ari_base);

		break;

292
	case (uint64_t)MCE_CMD_ENUM_READ_MCA:
293
		ret64 = ops->read_write_mca(cpu_ari_base, arg0, &arg1);
294
295

		/* update context to return MCA data/error */
296
297
298
		write_ctx_reg(gp_regs, CTX_GPREG_X1, (ret64));
		write_ctx_reg(gp_regs, CTX_GPREG_X2, (arg1));
		write_ctx_reg(gp_regs, CTX_GPREG_X3, (ret64));
299
300
301

		break;

302
	case (uint64_t)MCE_CMD_ENUM_WRITE_MCA:
303
		ret64 = ops->read_write_mca(cpu_ari_base, arg0, &arg1);
304
305

		/* update context to return MCA error */
306
307
		write_ctx_reg(gp_regs, CTX_GPREG_X1, (ret64));
		write_ctx_reg(gp_regs, CTX_GPREG_X3, (ret64));
308
309
310

		break;

311
#if ENABLE_CHIP_VERIFICATION_HARNESS
312
	case (uint64_t)MCE_CMD_ENABLE_LATIC:
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
		/*
		 * This call is not for production use. The constant value,
		 * 0xFFFF0000, is specific to allowing for enabling LATIC on
		 * pre-production parts for the chip verification harness.
		 *
		 * Enabling LATIC allows S/W to read the MINI ISPs in the
		 * CCPLEX. The ISMs are used for various measurements relevant
		 * to particular locations in the Silicon. They are small
		 * counters which can be polled to determine how fast a
		 * particular location in the Silicon is.
		 */
		ops->enter_ccplex_state(mce_get_curr_cpu_ari_base(),
			0xFFFF0000);

		break;
#endif
329

330
	case (uint64_t)MCE_CMD_UNCORE_PERFMON_REQ:
331
		ret = ops->read_write_uncore_perfmon(cpu_ari_base, arg0, &arg1);
332
333

		/* update context to return data */
334
		write_ctx_reg(gp_regs, CTX_GPREG_X1, (arg1));
335
336
		break;

337
	case (uint64_t)MCE_CMD_MISC_CCPLEX:
338
339
340
341
		ops->misc_ccplex(cpu_ari_base, arg0, arg1);

		break;

342
	default:
343
		ERROR("unknown MCE command (%llu)\n", cmd);
344
345
		ret = EINVAL;
		break;
346
347
348
349
350
351
352
353
	}

	return ret;
}

/*******************************************************************************
 * Handler to update the reset vector for CPUs
 ******************************************************************************/
354
int32_t mce_update_reset_vector(void)
355
{
356
	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
357

358
	ops->update_reset_vector(mce_get_curr_cpu_ari_base());
359
360
361
362

	return 0;
}

363
static int32_t mce_update_ccplex_gsc(tegra_ari_gsc_index_t gsc_idx)
364
{
365
	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
366
367
368
369
370
371
372
373
374

	ops->update_ccplex_gsc(mce_get_curr_cpu_ari_base(), gsc_idx);

	return 0;
}

/*******************************************************************************
 * Handler to update carveout values for Video Memory Carveout region
 ******************************************************************************/
375
int32_t mce_update_gsc_videomem(void)
376
377
378
379
380
381
382
{
	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_VPR_IDX);
}

/*******************************************************************************
 * Handler to update carveout values for TZDRAM aperture
 ******************************************************************************/
383
int32_t mce_update_gsc_tzdram(void)
384
385
386
387
388
389
390
{
	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_TZ_DRAM_IDX);
}

/*******************************************************************************
 * Handler to update carveout values for TZ SysRAM aperture
 ******************************************************************************/
391
int32_t mce_update_gsc_tzram(void)
392
393
394
395
396
397
398
399
400
{
	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_TZRAM);
}

/*******************************************************************************
 * Handler to shutdown/reset the entire system
 ******************************************************************************/
__dead2 void mce_enter_ccplex_state(uint32_t state_idx)
{
401
	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
402
403

	/* sanity check state value */
404
405
	if ((state_idx != TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) &&
	    (state_idx != TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT)) {
406
		panic();
407
	}
408
409
410
411

	ops->enter_ccplex_state(mce_get_curr_cpu_ari_base(), state_idx);

	/* wait till the CCPLEX powers down */
412
	for (;;) {
413
		;
414
	}
415
416

}
417

418
419
420
/*******************************************************************************
 * Handler to issue the UPDATE_CSTATE_INFO request
 ******************************************************************************/
421
void mce_update_cstate_info(const mce_cstate_info_t *cstate)
422
{
423
	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
424
425
426
427
428
429
430

	/* issue the UPDATE_CSTATE_INFO request */
	ops->update_cstate_info(mce_get_curr_cpu_ari_base(), cstate->cluster,
		cstate->ccplex, cstate->system, cstate->system_state_force,
		cstate->wake_mask, cstate->update_wake_mask);
}

431
432
433
434
435
436
/*******************************************************************************
 * Handler to read the MCE firmware version and check if it is compatible
 * with interface header the BL3-1 was compiled against
 ******************************************************************************/
void mce_verify_firmware_version(void)
{
437
	const arch_mce_ops_t *ops;
438
439
	uint32_t cpu_ari_base;
	uint64_t version;
440
441
442
	uint32_t major, minor;

	/*
443
	 * MCE firmware is not supported on simulation platforms.
444
	 */
445
	if (tegra_platform_is_emulation()) {
446

447
		INFO("MCE firmware is not supported\n");
448

449
450
451
	} else {
		/* get a pointer to the CPU's arch_mce_ops_t struct */
		ops = mce_get_curr_cpu_ops();
452

453
454
		/* get the CPU's ARI base address */
		cpu_ari_base = mce_get_curr_cpu_ari_base();
455

456
457
458
459
460
461
462
		/*
		 * Read the MCE firmware version and extract the major and minor
		 * version fields
		 */
		version = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_VERSION, 0);
		major = (uint32_t)version;
		minor = (uint32_t)(version >> 32);
463

464
465
		INFO("MCE Version - HW=%d:%d, SW=%d:%d\n", major, minor,
			TEGRA_ARI_VERSION_MAJOR, TEGRA_ARI_VERSION_MINOR);
466

467
468
469
470
471
472
473
474
475
476
477
478
479
		/*
		 * Verify that the MCE firmware version and the interface header
		 * match
		 */
		if (major != TEGRA_ARI_VERSION_MAJOR) {
			ERROR("ARI major version mismatch\n");
			panic();
		}

		if (minor < TEGRA_ARI_VERSION_MINOR) {
			ERROR("ARI minor version mismatch\n");
			panic();
		}
480
481
	}
}