context_mgmt.c 21 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
Paul Beesley's avatar
Paul Beesley committed
2
 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
Achin Gupta's avatar
Achin Gupta committed
5
6
 */

7
8
9
10
11
12
#include <assert.h>
#include <stdbool.h>
#include <string.h>

#include <platform_def.h>

13
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
14
#include <arch_helpers.h>
15
#include <arch_features.h>
16
17
#include <bl31/interrupt_mgmt.h>
#include <common/bl_common.h>
18
#include <context.h>
19
20
21
22
23
24
25
26
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>
#include <lib/extensions/mpam.h>
#include <lib/extensions/spe.h>
#include <lib/extensions/sve.h>
#include <lib/utils.h>
#include <plat/common/platform.h>
Antonio Nino Diaz's avatar
Antonio Nino Diaz committed
27
#include <smccc_helpers.h>
Achin Gupta's avatar
Achin Gupta committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
43
void __init cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
44
45
46
47
48
49
50
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

51
/*******************************************************************************
52
 * The following function initializes the cpu_context 'ctx' for
53
54
55
56
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
57
 * of the entry_point_info.
58
 *
Paul Beesley's avatar
Paul Beesley committed
59
 * The EE and ST attributes are used to configure the endianness and secure
60
 * timer availability for the new execution context.
61
62
63
64
65
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
66
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
67
{
68
	unsigned int security_state;
69
	uint32_t scr_el3, pmcr_el0;
70
71
	el3_state_t *state;
	gp_regs_t *gp_regs;
72
	unsigned long sctlr_elx, actlr_elx;
73

74
	assert(ctx != NULL);
75

76
77
	security_state = GET_SECURITY_STATE(ep->h.attr);

78
	/* Clear any residual register values from the context */
79
	zeromem(ctx, sizeof(*ctx));
80
81

	/*
82
83
84
85
86
87
88
	 * SCR_EL3 was initialised during reset sequence in macro
	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
	 * affect the next EL.
	 *
	 * The following fields are initially set to zero and then updated to
	 * the required value depending on the state of the SPSR_EL3 and the
	 * Security state and entrypoint attributes of the next EL.
89
	 */
90
	scr_el3 = (uint32_t)read_scr();
91
92
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);
93
94
95
	/*
	 * SCR_NS: Set the security state of the next EL.
	 */
96
97
	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;
98
99
100
101
	/*
	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
	 *  Exception level as specified by SPSR.
	 */
102
103
	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;
104
105
106
107
108
	/*
	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
	 *  Secure timer registers to EL3, from AArch64 state only, if specified
	 *  by the entrypoint attributes.
	 */
109
	if (EP_GET_ST(ep->h.attr) != 0U)
110
111
		scr_el3 |= SCR_ST_BIT;

112
#if !HANDLE_EA_EL3_FIRST
113
114
115
116
117
	/*
	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
	 *  to EL3 when executing at a lower EL. When executing at EL3, External
	 *  Aborts are taken to EL3.
	 */
118
119
120
	scr_el3 &= ~SCR_EA_BIT;
#endif

121
122
123
124
125
#if FAULT_INJECTION_SUPPORT
	/* Enable fault injection from lower ELs */
	scr_el3 |= SCR_FIEN_BIT;
#endif

126
127
128
129
130
131
132
133
134
135
136
137
138
139
#if !CTX_INCLUDE_PAUTH_REGS
	/*
	 * If the pointer authentication registers aren't saved during world
	 * switches the value of the registers can be leaked from the Secure to
	 * the Non-secure world. To prevent this, rather than enabling pointer
	 * authentication everywhere, we only enable it in the Non-secure world.
	 *
	 * If the Secure world wants to use pointer authentication,
	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
	 */
	if (security_state == NON_SECURE)
		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
#endif /* !CTX_INCLUDE_PAUTH_REGS */

140
141
142
143
144
145
146
147
148
149
150
151
	unsigned int mte = get_armv8_5_mte_support();

	/*
	 * Enable MTE support unilaterally for normal world if the CPU supports
	 * it.
	 */
	if (mte != MTE_UNIMPLEMENTED) {
		if (security_state == NON_SECURE) {
			scr_el3 |= SCR_ATA_BIT;
		}
	}

152
#ifdef IMAGE_BL31
153
	/*
Paul Beesley's avatar
Paul Beesley committed
154
	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
155
	 *  indicated by the interrupt routing model for BL31.
156
	 */
157
	scr_el3 |= get_scr_el3_from_routing_model(security_state);
158
#endif
159
160

	/*
161
162
163
164
	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
	 * next mode is Hyp.
	 */
165
166
167
	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
	    || ((GET_RW(ep->spsr) != MODE_RW_64)
		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
168
169
170
171
172
173
174
175
		scr_el3 |= SCR_HCE_BIT;
	}

	/*
	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
	 * execution state setting all fields rather than relying of the hw.
	 * Some fields have architecturally UNKNOWN reset values and these are
	 * set to zero.
176
	 *
177
	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
178
	 *
179
180
	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
	 *  required by PSCI specification)
181
	 */
182
	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
183
184
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
185
186
	else {
		/*
187
188
189
190
191
192
193
194
195
196
197
		 * If the target execution state is AArch32 then the following
		 * fields need to be set.
		 *
		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
198
		 */
199
200
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
201
202
	}

203
204
205
206
207
208
209
210
#if ERRATA_A75_764081
	/*
	 * If workaround of errata 764081 for Cortex-A75 is used then set
	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
	 */
	sctlr_elx |= SCTLR_IESB_BIT;
#endif

211
212
	/*
	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
Paul Beesley's avatar
Paul Beesley committed
213
	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
214
215
	 * are not part of the stored cpu_context.
	 */
216
217
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

218
219
220
221
222
223
224
225
226
227
	/*
	 * Base the context ACTLR_EL1 on the current value, as it is
	 * implementation defined. The context restore process will write
	 * the value from the context to the actual register and can cause
	 * problems for processor cores that don't expect certain bits to
	 * be zero.
	 */
	actlr_elx = read_actlr_el1();
	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
	if (security_state == SECURE) {
		/*
		 * Initialise PMCR_EL0 for secure context only, setting all
		 * fields rather than relying on hw. Some fields are
		 * architecturally UNKNOWN on reset.
		 *
		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
		 *
		 * PMCR_EL0.DP: Set to one so that the cycle counter,
		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
		 *
		 * PMCR_EL0.X: Set to zero to disable export of events.
		 *
		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
		 *  counts on every clock cycle.
		 */
		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
				| PMCR_EL0_DP_BIT)
				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
	}

252
253
254
255
256
257
258
259
260
261
262
263
264
265
	/* Populate EL3 state so that we've the right context before doing ERET */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

266
267
268
269
270
/*******************************************************************************
 * Enable architecture extensions on first entry to Non-secure world.
 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
 * it is zero.
 ******************************************************************************/
271
static void enable_extensions_nonsecure(bool el2_unused)
272
273
{
#if IMAGE_BL31
274
275
276
#if ENABLE_SPE_FOR_LOWER_ELS
	spe_enable(el2_unused);
#endif
277
278
279
280

#if ENABLE_AMU
	amu_enable(el2_unused);
#endif
David Cunado's avatar
David Cunado committed
281
282
283
284

#if ENABLE_SVE_FOR_NS
	sve_enable(el2_unused);
#endif
285
286
287
288

#if ENABLE_MPAM_FOR_LOWER_ELS
	mpam_enable(el2_unused);
#endif
289
290
291
#endif
}

292
293
294
295
296
297
298
299
300
301
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
302
	cm_setup_context(ctx, ep);
303
304
305
306
307
308
309
310
311
312
313
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
314
	cm_setup_context(ctx, ep);
315
316
}

317
318
319
320
321
322
323
324
325
326
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
327
	uint32_t sctlr_elx, scr_el3, mdcr_el2;
328
	cpu_context_t *ctx = cm_get_context(security_state);
329
	bool el2_unused = false;
330
	uint64_t hcr_el2 = 0U;
331

332
	assert(ctx != NULL);
333
334

	if (security_state == NON_SECURE) {
335
336
337
		scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx),
						 CTX_SCR_EL3);
		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
338
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
339
340
			sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx),
							   CTX_SCTLR_EL1);
Ken Kuang's avatar
Ken Kuang committed
341
			sctlr_elx &= SCTLR_EE_BIT;
342
			sctlr_elx |= SCTLR_EL2_RES1;
343
344
345
346
347
348
349
350
#if ERRATA_A75_764081
			/*
			 * If workaround of errata 764081 for Cortex-A75 is used
			 * then set SCTLR_EL2.IESB to enable Implicit Error
			 * Synchronization Barrier.
			 */
			sctlr_elx |= SCTLR_IESB_BIT;
#endif
351
			write_sctlr_el2(sctlr_elx);
352
		} else if (el_implemented(2) != EL_IMPL_NONE) {
353
			el2_unused = true;
354

355
356
357
358
			/*
			 * EL2 present but unused, need to disable safely.
			 * SCTLR_EL2 can be ignored in this case.
			 *
359
360
			 * Set EL2 register width appropriately: Set HCR_EL2
			 * field to match SCR_EL3.RW.
361
			 */
362
			if ((scr_el3 & SCR_RW_BIT) != 0U)
363
364
365
366
367
368
369
370
371
372
				hcr_el2 |= HCR_RW_BIT;

			/*
			 * For Armv8.3 pointer authentication feature, disable
			 * traps to EL2 when accessing key registers or using
			 * pointer authentication instructions from lower ELs.
			 */
			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);

			write_hcr_el2(hcr_el2);
373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
			/*
			 * Initialise CPTR_EL2 setting all fields rather than
			 * relying on the hw. All fields have architecturally
			 * UNKNOWN reset values.
			 *
			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
			 *  accesses to the CPACR_EL1 or CPACR from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
			 *  register accesses to the trace registers from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
			 *  to SIMD and floating-point functionality from both
			 *  Execution states do not trap to EL2.
			 */
			write_cptr_el2(CPTR_EL2_RESET_VAL &
					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
					| CPTR_EL2_TFP_BIT));
394

395
			/*
Paul Beesley's avatar
Paul Beesley committed
396
			 * Initialise CNTHCTL_EL2. All fields are
397
398
399
400
401
402
403
404
405
406
407
408
409
			 * architecturally UNKNOWN on reset and are set to zero
			 * except for field(s) listed below.
			 *
			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
			 *  physical timer registers.
			 *
			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
			 *  physical counter registers.
			 */
			write_cnthctl_el2(CNTHCTL_RESET_VAL |
						EL1PCEN_BIT | EL1PCTEN_BIT);
410

411
412
413
414
			/*
			 * Initialise CNTVOFF_EL2 to zero as it resets to an
			 * architecturally UNKNOWN value.
			 */
415
416
			write_cntvoff_el2(0);

417
418
419
420
			/*
			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
			 * MPIDR_EL1 respectively.
			 */
421
422
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
423
424

			/*
425
426
427
428
429
430
431
432
433
			 * Initialise VTTBR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
			 *  2 address translation is disabled, cache maintenance
			 *  operations depend on the VMID.
			 *
			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
			 *  translation is disabled.
434
			 */
435
436
437
438
			write_vttbr_el2(VTTBR_RESET_VAL &
				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));

439
			/*
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
			 * Initialise MDCR_EL2, setting all fields rather than
			 * relying on hw. Some fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
			 *  EL1 System register accesses to the Debug ROM
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
			 *  System register accesses to the powerdown debug
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDA: Set to zero so that System register
			 *  accesses to the debug registers do not trap to EL2.
			 *
			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
			 *  are not routed to EL2.
			 *
			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
			 *  Monitors.
			 *
			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
			 *  EL1 accesses to all Performance Monitors registers
			 *  are not trapped to EL2.
			 *
			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
			 *  trapped to EL2.
			 *
			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
			 *  architecturally-defined reset value.
471
			 */
472
			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
473
474
475
476
477
478
					((read_pmcr_el0() & PMCR_EL0_N_BITS)
					>> PMCR_EL0_N_SHIFT)) &
					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
					| MDCR_EL2_TPMCR_BIT));
479
480
481

			write_mdcr_el2(mdcr_el2);

482
			/*
483
484
485
486
487
488
			 * Initialise HSTR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * HSTR_EL2.T<n>: Set all these fields to zero so that
			 *  Non-secure EL0 or EL1 accesses to System registers
			 *  do not trap to EL2.
489
			 */
490
			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
491
			/*
492
493
494
495
496
			 * Initialise CNTHP_CTL_EL2. All fields are
			 * architecturally UNKNOWN on reset.
			 *
			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
			 *  physical timer and prevent timer interrupts.
497
			 */
498
499
			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
						~(CNTHP_CTL_ENABLE_BIT));
500
		}
501
		enable_extensions_nonsecure(el2_unused);
502
503
	}

504
505
	cm_el1_sysregs_context_restore(security_state);
	cm_set_next_eret_context(security_state);
506
507
}

Achin Gupta's avatar
Achin Gupta committed
508
/*******************************************************************************
509
510
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
511
512
513
514
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
515
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
516

517
	ctx = cm_get_context(security_state);
518
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
519
520

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
521
522
523
524
525
526
527

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_exited_secure_world);
	else
		PUBLISH_EVENT(cm_exited_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
528
529
530
531
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
532
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
533

534
	ctx = cm_get_context(security_state);
535
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
536
537

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
538
539
540
541
542
543
544

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_entering_secure_world);
	else
		PUBLISH_EVENT(cm_entering_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
545
546
547
}

/*******************************************************************************
548
549
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
550
 ******************************************************************************/
551
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
552
{
553
554
	cpu_context_t *ctx;
	el3_state_t *state;
555

556
	ctx = cm_get_context(security_state);
557
	assert(ctx != NULL);
558

559
	/* Populate EL3 state so that ERET jumps to the correct entry */
560
561
562
563
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

564
/*******************************************************************************
565
566
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
567
 ******************************************************************************/
568
void cm_set_elr_spsr_el3(uint32_t security_state,
569
			uintptr_t entrypoint, uint32_t spsr)
570
{
571
572
	cpu_context_t *ctx;
	el3_state_t *state;
573

574
	ctx = cm_get_context(security_state);
575
	assert(ctx != NULL);
576
577
578
579

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
580
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
581
582
}

583
584
585
586
587
588
589
590
591
592
593
594
595
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
	uint32_t scr_el3;

596
	ctx = cm_get_context(security_state);
597
	assert(ctx != NULL);
598
599

	/* Ensure that the bit position is a valid one */
600
	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
601
602

	/* Ensure that the 'value' is only a bit wide */
603
	assert(value <= 1U);
604
605
606
607
608
609

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
610
611
	scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
	scr_el3 &= ~(1U << bit_pos);
612
613
614
615
616
617
618
619
620
621
622
623
624
	scr_el3 |= value << bit_pos;
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
uint32_t cm_get_scr_el3(uint32_t security_state)
{
	cpu_context_t *ctx;
	el3_state_t *state;

625
	ctx = cm_get_context(security_state);
626
	assert(ctx != NULL);
627
628
629

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
630
	return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
631
632
}

633
634
635
636
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
637
638
639
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
640
	cpu_context_t *ctx;
641

642
	ctx = cm_get_context(security_state);
643
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
644

645
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
646
}