sdei_intr_mgmt.c 18.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/*
 * Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <cassert.h>
#include <debug.h>
#include <ehf.h>
#include <interrupt_mgmt.h>
#include <runtime_svc.h>
#include <sdei.h>
#include <string.h>
#include "sdei_private.h"

#define PE_MASKED	1
#define PE_NOT_MASKED	0

/* x0-x17 GPREGS context */
#define SDEI_SAVED_GPREGS	18

/* Maximum preemption nesting levels: Critical priority and Normal priority */
#define MAX_EVENT_NESTING	2

/* Per-CPU SDEI state access macro */
#define sdei_get_this_pe_state()	(&sdei_cpu_state[plat_my_core_pos()])

/* Structure to store information about an outstanding dispatch */
typedef struct sdei_dispatch_context {
	sdei_ev_map_t *map;
	uint64_t x[SDEI_SAVED_GPREGS];
	struct jmpbuf *dispatch_jmp;

	/* Exception state registers */
	uint64_t elr_el3;
	uint64_t spsr_el3;

#if DYNAMIC_WORKAROUND_CVE_2018_3639
	/* CVE-2018-3639 mitigation state */
	uint64_t disable_cve_2018_3639;
#endif
} sdei_dispatch_context_t;

/* Per-CPU SDEI state data */
typedef struct sdei_cpu_state {
	sdei_dispatch_context_t dispatch_stack[MAX_EVENT_NESTING];
	unsigned short stack_top; /* Empty ascending */
	unsigned int pe_masked:1;
	unsigned int pending_enables:1;
} sdei_cpu_state_t;

/* SDEI states for all cores in the system */
static sdei_cpu_state_t sdei_cpu_state[PLATFORM_CORE_COUNT];

unsigned int sdei_pe_mask(void)
{
	unsigned int ret;
	sdei_cpu_state_t *state = sdei_get_this_pe_state();

	/*
	 * Return value indicates whether this call had any effect in the mask
	 * status of this PE.
	 */
	ret = (state->pe_masked ^ PE_MASKED);
	state->pe_masked = PE_MASKED;

	return ret;
}

void sdei_pe_unmask(void)
{
	int i;
	sdei_ev_map_t *map;
	sdei_entry_t *se;
	sdei_cpu_state_t *state = sdei_get_this_pe_state();
	uint64_t my_mpidr = read_mpidr_el1() & MPIDR_AFFINITY_MASK;

	/*
	 * If there are pending enables, iterate through the private mappings
	 * and enable those bound maps that are in enabled state. Also, iterate
	 * through shared mappings and enable interrupts of events that are
	 * targeted to this PE.
	 */
	if (state->pending_enables) {
		for_each_private_map(i, map) {
			se = get_event_entry(map);
			if (is_map_bound(map) && GET_EV_STATE(se, ENABLED))
				plat_ic_enable_interrupt(map->intr);
		}

		for_each_shared_map(i, map) {
			se = get_event_entry(map);

			sdei_map_lock(map);
			if (is_map_bound(map) &&
					GET_EV_STATE(se, ENABLED) &&
					(se->reg_flags == SDEI_REGF_RM_PE) &&
					(se->affinity == my_mpidr)) {
				plat_ic_enable_interrupt(map->intr);
			}
			sdei_map_unlock(map);
		}
	}

	state->pending_enables = 0;
	state->pe_masked = PE_NOT_MASKED;
}

/* Push a dispatch context to the dispatch stack */
static sdei_dispatch_context_t *push_dispatch(void)
{
	sdei_cpu_state_t *state = sdei_get_this_pe_state();
	sdei_dispatch_context_t *disp_ctx;

	/* Cannot have more than max events */
	assert(state->stack_top < MAX_EVENT_NESTING);

	disp_ctx = &state->dispatch_stack[state->stack_top];
	state->stack_top++;

	return disp_ctx;
}

/* Pop a dispatch context to the dispatch stack */
static sdei_dispatch_context_t *pop_dispatch(void)
{
	sdei_cpu_state_t *state = sdei_get_this_pe_state();

	if (state->stack_top == 0)
		return NULL;

	assert(state->stack_top <= MAX_EVENT_NESTING);

	state->stack_top--;

	return &state->dispatch_stack[state->stack_top];
}

/* Retrieve the context at the top of dispatch stack */
static sdei_dispatch_context_t *get_outstanding_dispatch(void)
{
	sdei_cpu_state_t *state = sdei_get_this_pe_state();

	if (state->stack_top == 0)
		return NULL;

	assert(state->stack_top <= MAX_EVENT_NESTING);

	return &state->dispatch_stack[state->stack_top - 1];
}

static sdei_dispatch_context_t *save_event_ctx(sdei_ev_map_t *map,
		void *tgt_ctx)
{
	sdei_dispatch_context_t *disp_ctx;
	gp_regs_t *tgt_gpregs;
	el3_state_t *tgt_el3;

	assert(tgt_ctx);
	tgt_gpregs = get_gpregs_ctx(tgt_ctx);
	tgt_el3 = get_el3state_ctx(tgt_ctx);

	disp_ctx = push_dispatch();
	assert(disp_ctx);
	disp_ctx->map = map;

	/* Save general purpose and exception registers */
	memcpy(disp_ctx->x, tgt_gpregs, sizeof(disp_ctx->x));
	disp_ctx->spsr_el3 = read_ctx_reg(tgt_el3, CTX_SPSR_EL3);
	disp_ctx->elr_el3 = read_ctx_reg(tgt_el3, CTX_ELR_EL3);

	return disp_ctx;
}

static void restore_event_ctx(sdei_dispatch_context_t *disp_ctx, void *tgt_ctx)
{
	gp_regs_t *tgt_gpregs;
	el3_state_t *tgt_el3;

	assert(tgt_ctx);
	tgt_gpregs = get_gpregs_ctx(tgt_ctx);
	tgt_el3 = get_el3state_ctx(tgt_ctx);

	CASSERT(sizeof(disp_ctx->x) == (SDEI_SAVED_GPREGS * sizeof(uint64_t)),
			foo);

	/* Restore general purpose and exception registers */
	memcpy(tgt_gpregs, disp_ctx->x, sizeof(disp_ctx->x));
	write_ctx_reg(tgt_el3, CTX_SPSR_EL3, disp_ctx->spsr_el3);
	write_ctx_reg(tgt_el3, CTX_ELR_EL3, disp_ctx->elr_el3);

#if DYNAMIC_WORKAROUND_CVE_2018_3639
	cve_2018_3639_t *tgt_cve_2018_3639;
	tgt_cve_2018_3639 = get_cve_2018_3639_ctx(tgt_ctx);

	/* Restore CVE-2018-3639 mitigation state */
	write_ctx_reg(tgt_cve_2018_3639, CTX_CVE_2018_3639_DISABLE,
		disp_ctx->disable_cve_2018_3639);
#endif
}

static void save_secure_context(void)
{
	cm_el1_sysregs_context_save(SECURE);
}

/* Restore Secure context and arrange to resume it at the next ERET */
static void restore_and_resume_secure_context(void)
{
	cm_el1_sysregs_context_restore(SECURE);
	cm_set_next_eret_context(SECURE);
}

/*
 * Restore Non-secure context and arrange to resume it at the next ERET. Return
 * pointer to the Non-secure context.
 */
static cpu_context_t *restore_and_resume_ns_context(void)
{
	cpu_context_t *ns_ctx;

	cm_el1_sysregs_context_restore(NON_SECURE);
	cm_set_next_eret_context(NON_SECURE);

	ns_ctx = cm_get_context(NON_SECURE);
	assert(ns_ctx);

	return ns_ctx;
}

/*
 * Populate the Non-secure context so that the next ERET will dispatch to the
 * SDEI client.
 */
static void setup_ns_dispatch(sdei_ev_map_t *map, sdei_entry_t *se,
		cpu_context_t *ctx, struct jmpbuf *dispatch_jmp)
{
	sdei_dispatch_context_t *disp_ctx;

	/* Push the event and context */
	disp_ctx = save_event_ctx(map, ctx);

	/*
	 * Setup handler arguments:
	 *
	 * - x0: Event number
	 * - x1: Handler argument supplied at the time of event registration
	 * - x2: Interrupted PC
	 * - x3: Interrupted SPSR
	 */
	SMC_SET_GP(ctx, CTX_GPREG_X0, map->ev_num);
	SMC_SET_GP(ctx, CTX_GPREG_X1, se->arg);
	SMC_SET_GP(ctx, CTX_GPREG_X2, disp_ctx->elr_el3);
	SMC_SET_GP(ctx, CTX_GPREG_X3, disp_ctx->spsr_el3);

	/*
	 * Prepare for ERET:
	 *
	 * - Set PC to the registered handler address
	 * - Set SPSR to jump to client EL with exceptions masked
	 */
	cm_set_elr_spsr_el3(NON_SECURE, (uintptr_t) se->ep,
			SPSR_64(sdei_client_el(), MODE_SP_ELX,
				DISABLE_ALL_EXCEPTIONS));

#if DYNAMIC_WORKAROUND_CVE_2018_3639
	cve_2018_3639_t *tgt_cve_2018_3639;
	tgt_cve_2018_3639 = get_cve_2018_3639_ctx(ctx);

	/* Save CVE-2018-3639 mitigation state */
	disp_ctx->disable_cve_2018_3639 = read_ctx_reg(tgt_cve_2018_3639,
		CTX_CVE_2018_3639_DISABLE);

	/* Force SDEI handler to execute with mitigation enabled by default */
	write_ctx_reg(tgt_cve_2018_3639, CTX_CVE_2018_3639_DISABLE, 0);
#endif

	disp_ctx->dispatch_jmp = dispatch_jmp;
}

/* Handle a triggered SDEI interrupt while events were masked on this PE */
static void handle_masked_trigger(sdei_ev_map_t *map, sdei_entry_t *se,
		sdei_cpu_state_t *state, unsigned int intr_raw)
{
	uint64_t my_mpidr __unused = (read_mpidr_el1() & MPIDR_AFFINITY_MASK);
	int disable = 0;

	/* Nothing to do for event 0 */
	if (map->ev_num == SDEI_EVENT_0)
		return;

	/*
	 * For a private event, or for a shared event specifically routed to
	 * this CPU, we disable interrupt, leave the interrupt pending, and do
	 * EOI.
	 */
	if (is_event_private(map)) {
		disable = 1;
	} else if (se->reg_flags == SDEI_REGF_RM_PE) {
		assert(se->affinity == my_mpidr);
		disable = 1;
	}

	if (disable) {
		plat_ic_disable_interrupt(map->intr);
		plat_ic_set_interrupt_pending(map->intr);
		plat_ic_end_of_interrupt(intr_raw);
		state->pending_enables = 1;

		return;
	}

	/*
	 * We just received a shared event with routing set to ANY PE. The
	 * interrupt can't be delegated on this PE as SDEI events are masked.
	 * However, because its routing mode is ANY, it is possible that the
	 * event can be delegated on any other PE that hasn't masked events.
	 * Therefore, we set the interrupt back pending so as to give other
	 * suitable PEs a chance of handling it.
	 */
	assert(plat_ic_is_spi(map->intr));
	plat_ic_set_interrupt_pending(map->intr);

	/*
	 * Leaving the same interrupt pending also means that the same interrupt
	 * can target this PE again as soon as this PE leaves EL3. Whether and
	 * how often that happens depends on the implementation of GIC.
	 *
	 * We therefore call a platform handler to resolve this situation.
	 */
	plat_sdei_handle_masked_trigger(my_mpidr, map->intr);

	/* This PE is masked. We EOI the interrupt, as it can't be delegated */
	plat_ic_end_of_interrupt(intr_raw);
}

/* SDEI main interrupt handler */
int sdei_intr_handler(uint32_t intr_raw, uint32_t flags, void *handle,
		void *cookie)
{
	sdei_entry_t *se;
	cpu_context_t *ctx;
	sdei_ev_map_t *map;
	sdei_dispatch_context_t *disp_ctx;
	unsigned int sec_state;
	sdei_cpu_state_t *state;
	uint32_t intr;
	struct jmpbuf dispatch_jmp;

	/*
	 * To handle an event, the following conditions must be true:
	 *
	 * 1. Event must be signalled
	 * 2. Event must be enabled
	 * 3. This PE must be a target PE for the event
	 * 4. PE must be unmasked for SDEI
	 * 5. If this is a normal event, no event must be running
	 * 6. If this is a critical event, no critical event must be running
	 *
	 * (1) and (2) are true when this function is running
	 * (3) is enforced in GIC by selecting the appropriate routing option
	 * (4) is satisfied by client calling PE_UNMASK
	 * (5) and (6) is enforced using interrupt priority, the RPR, in GIC:
	 *   - Normal SDEI events belong to Normal SDE priority class
	 *   - Critical SDEI events belong to Critical CSDE priority class
	 *
	 * The interrupt has already been acknowledged, and therefore is active,
	 * so no other PE can handle this event while we are at it.
	 *
	 * Find if this is an SDEI interrupt. There must be an event mapped to
	 * this interrupt
	 */
	intr = plat_ic_get_interrupt_id(intr_raw);
	map = find_event_map_by_intr(intr, plat_ic_is_spi(intr));
	if (!map) {
		ERROR("No SDEI map for interrupt %u\n", intr);
		panic();
	}

	/*
	 * Received interrupt number must either correspond to event 0, or must
	 * be bound interrupt.
	 */
	assert((map->ev_num == SDEI_EVENT_0) || is_map_bound(map));

	se = get_event_entry(map);
	state = sdei_get_this_pe_state();

	if (state->pe_masked == PE_MASKED) {
		/*
		 * Interrupts received while this PE was masked can't be
		 * dispatched.
		 */
		SDEI_LOG("interrupt %u on %lx while PE masked\n", map->intr,
				read_mpidr_el1());
		if (is_event_shared(map))
			sdei_map_lock(map);

		handle_masked_trigger(map, se, state, intr_raw);

		if (is_event_shared(map))
			sdei_map_unlock(map);

		return 0;
	}

	/* Insert load barrier for signalled SDEI event */
	if (map->ev_num == SDEI_EVENT_0)
		dmbld();

	if (is_event_shared(map))
		sdei_map_lock(map);

	/* Assert shared event routed to this PE had been configured so */
	if (is_event_shared(map) && (se->reg_flags == SDEI_REGF_RM_PE)) {
		assert(se->affinity ==
				(read_mpidr_el1() & MPIDR_AFFINITY_MASK));
	}

	if (!can_sdei_state_trans(se, DO_DISPATCH)) {
		SDEI_LOG("SDEI event 0x%x can't be dispatched; state=0x%x\n",
				map->ev_num, se->state);

		/*
		 * If the event is registered, leave the interrupt pending so
		 * that it's delivered when the event is enabled.
		 */
		if (GET_EV_STATE(se, REGISTERED))
			plat_ic_set_interrupt_pending(map->intr);

		/*
		 * The interrupt was disabled or unregistered after the handler
		 * started to execute, which means now the interrupt is already
		 * disabled and we just need to EOI the interrupt.
		 */
		plat_ic_end_of_interrupt(intr_raw);

		if (is_event_shared(map))
			sdei_map_unlock(map);

		return 0;
	}

	disp_ctx = get_outstanding_dispatch();
	if (is_event_critical(map)) {
		/*
		 * If this event is Critical, and if there's an outstanding
		 * dispatch, assert the latter is a Normal dispatch. Critical
		 * events can preempt an outstanding Normal event dispatch.
		 */
		if (disp_ctx)
			assert(is_event_normal(disp_ctx->map));
	} else {
		/*
		 * If this event is Normal, assert that there are no outstanding
		 * dispatches. Normal events can't preempt any outstanding event
		 * dispatches.
		 */
		assert(disp_ctx == NULL);
	}

	sec_state = get_interrupt_src_ss(flags);

	if (is_event_shared(map))
		sdei_map_unlock(map);

	SDEI_LOG("ACK %lx, ev:%d ss:%d spsr:%lx ELR:%lx\n", read_mpidr_el1(),
			map->ev_num, sec_state, read_spsr_el3(),
			read_elr_el3());

	ctx = handle;

	/*
	 * Check if we interrupted secure state. Perform a context switch so
	 * that we can delegate to NS.
	 */
	if (sec_state == SECURE) {
		save_secure_context();
		ctx = restore_and_resume_ns_context();
	}

	/* Synchronously dispatch event */
	setup_ns_dispatch(map, se, ctx, &dispatch_jmp);
	begin_sdei_synchronous_dispatch(&dispatch_jmp);

	/*
	 * We reach here when client completes the event.
	 *
	 * If the cause of dispatch originally interrupted the Secure world, and
	 * if Non-secure world wasn't allowed to preempt Secure execution,
	 * resume Secure.
	 *
	 * No need to save the Non-secure context ahead of a world switch: the
	 * Non-secure context was fully saved before dispatch, and has been
	 * returned to its pre-dispatch state.
	 */
	if ((sec_state == SECURE) && (ehf_is_ns_preemption_allowed() == 0))
		restore_and_resume_secure_context();

	/*
	 * The event was dispatched after receiving SDEI interrupt. With
	 * the event handling completed, EOI the corresponding
	 * interrupt.
	 */
	if ((map->ev_num != SDEI_EVENT_0) && !is_map_bound(map)) {
		ERROR("Invalid SDEI mapping: ev=%u\n", map->ev_num);
		panic();
	}
	plat_ic_end_of_interrupt(intr_raw);

	if (is_event_shared(map))
		sdei_map_unlock(map);

	return 0;
}

/*
 * Explicitly dispatch the given SDEI event.
 *
 * When calling this API, the caller must be prepared for the SDEI dispatcher to
 * restore and make Non-secure context as active. This call returns only after
 * the client has completed the dispatch. Then, the Non-secure context will be
 * active, and the following ERET will return to Non-secure.
 *
 * Should the caller require re-entry to Secure, it must restore the Secure
 * context and program registers for ERET.
 */
int sdei_dispatch_event(int ev_num)
{
	sdei_entry_t *se;
	sdei_ev_map_t *map;
	cpu_context_t *ns_ctx;
	sdei_dispatch_context_t *disp_ctx;
	sdei_cpu_state_t *state;
	struct jmpbuf dispatch_jmp;

	/* Can't dispatch if events are masked on this PE */
	state = sdei_get_this_pe_state();
	if (state->pe_masked == PE_MASKED)
		return -1;

	/* Event 0 can't be dispatched */
	if (ev_num == SDEI_EVENT_0)
		return -1;

	/* Locate mapping corresponding to this event */
	map = find_event_map(ev_num);
	if (!map)
		return -1;

	/* Only explicit events can be dispatched */
	if (!is_map_explicit(map))
		return -1;

	/* Examine state of dispatch stack */
	disp_ctx = get_outstanding_dispatch();
	if (disp_ctx) {
		/*
		 * There's an outstanding dispatch. If the outstanding dispatch
		 * is critical, no more dispatches are possible.
		 */
		if (is_event_critical(disp_ctx->map))
			return -1;

		/*
		 * If the outstanding dispatch is Normal, only critical events
		 * can be dispatched.
		 */
		if (is_event_normal(map))
			return -1;
	}

	se = get_event_entry(map);
	if (!can_sdei_state_trans(se, DO_DISPATCH))
		return -1;

	/* Activate the priority corresponding to the event being dispatched */
	ehf_activate_priority(sdei_event_priority(map));

	/*
	 * Prepare for NS dispatch by restoring the Non-secure context and
	 * marking that as active.
	 */
	ns_ctx = restore_and_resume_ns_context();

	/* Dispatch event synchronously */
	setup_ns_dispatch(map, se, ns_ctx, &dispatch_jmp);
	begin_sdei_synchronous_dispatch(&dispatch_jmp);

	/*
	 * We reach here when client completes the event.
	 *
	 * Deactivate the priority level that was activated at the time of
	 * explicit dispatch.
	 */
	ehf_deactivate_priority(sdei_event_priority(map));

	return 0;
}

static void end_sdei_explicit_dispatch(struct jmpbuf *buffer)
{
	longjmp(buffer);
}

int sdei_event_complete(int resume, uint64_t pc)
{
	sdei_dispatch_context_t *disp_ctx;
	sdei_entry_t *se;
	sdei_ev_map_t *map;
	cpu_context_t *ctx;
	sdei_action_t act;
	unsigned int client_el = sdei_client_el();

	/* Return error if called without an active event */
	disp_ctx = get_outstanding_dispatch();
	if (!disp_ctx)
		return SDEI_EDENY;

	/* Validate resumption point */
	if (resume && (plat_sdei_validate_entry_point(pc, client_el) != 0))
		return SDEI_EDENY;

	map = disp_ctx->map;
	assert(map);
	se = get_event_entry(map);

	act = resume ? DO_COMPLETE_RESUME : DO_COMPLETE;
	if (!can_sdei_state_trans(se, act)) {
		if (is_event_shared(map))
			sdei_map_unlock(map);
		return SDEI_EDENY;
	}

	/* Having done sanity checks, pop dispatch */
	pop_dispatch();

	SDEI_LOG("EOI:%lx, %d spsr:%lx elr:%lx\n", read_mpidr_el1(),
			map->ev_num, read_spsr_el3(), read_elr_el3());

	if (is_event_shared(map))
		sdei_map_lock(map);

	/*
	 * Restore Non-secure to how it was originally interrupted. Once done,
	 * it's up-to-date with the saved copy.
	 */
	ctx = cm_get_context(NON_SECURE);
	restore_event_ctx(disp_ctx, ctx);

	if (resume) {
		/*
		 * Complete-and-resume call. Prepare the Non-secure context
		 * (currently active) for complete and resume.
		 */
		cm_set_elr_spsr_el3(NON_SECURE, pc, SPSR_64(client_el,
					MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));

		/*
		 * Make it look as if a synchronous exception were taken at the
		 * supplied Non-secure resumption point. Populate SPSR and
		 * ELR_ELx so that an ERET from there works as expected.
		 *
		 * The assumption is that the client, if necessary, would have
		 * saved any live content in these registers before making this
		 * call.
		 */
		if (client_el == MODE_EL2) {
			write_elr_el2(disp_ctx->elr_el3);
			write_spsr_el2(disp_ctx->spsr_el3);
		} else {
			/* EL1 */
			write_elr_el1(disp_ctx->elr_el3);
			write_spsr_el1(disp_ctx->spsr_el3);
		}
	}

	/* End the outstanding dispatch */
	end_sdei_explicit_dispatch(disp_ctx->dispatch_jmp);

	return 0;
}

int sdei_event_context(void *handle, unsigned int param)
{
	sdei_dispatch_context_t *disp_ctx;

	if (param >= SDEI_SAVED_GPREGS)
		return SDEI_EINVAL;

	/* Get outstanding dispatch on this CPU */
	disp_ctx = get_outstanding_dispatch();
	if (!disp_ctx)
		return SDEI_EDENY;

	assert(disp_ctx->map);

	if (!can_sdei_state_trans(get_event_entry(disp_ctx->map), DO_CONTEXT))
		return SDEI_EDENY;

	/*
	 * No locking is required for the Running status as this is the only CPU
	 * which can complete the event
	 */

	return disp_ctx->x[param];
}