- 20 Sep, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds capability to load BL images based on image descriptors instead of hard coded way of loading BL images. This framework is designed such that it can be readily adapted by any BL stage that needs to load images. In order to provide the above capability the following new platform functions are introduced: bl_load_info_t *plat_get_bl_image_load_info(void); This function returns pointer to the list of images that the platform has populated to load. bl_params_t *plat_get_next_bl_params(void); This function returns a pointer to the shared memory that the platform has kept aside to pass trusted firmware related information that next BL image needs. void plat_flush_next_bl_params(void); This function flushes to main memory all the params that are passed to next image. int bl2_plat_handle_post_image_load(unsigned int image_id) This function can be used by the platforms to update/use image information for given `image_id`. `desc_image_load.c` contains utility functions which can be used by the platforms to generate, load and executable, image list based on the registered image descriptors. This patch also adds new version of `load_image/load_auth_image` functions in-order to achieve the above capability. Following are the changes for the new version as compared to old: - Refactor the signature and only keep image_id and image_info_t arguments. Removed image_base argument as it is already passed through image_info_t. Given that the BL image base addresses and limit/size are already provided by the platforms, the meminfo_t and entry_point_info arguments are not needed to provide/reserve the extent of free memory for the given BL image. - Added check for the image size against the defined max size. This is needed because the image size could come from an unauthenticated source (e.g. the FIP header). To make this check, new member is added to the image_info_t struct for identifying the image maximum size. New flag `LOAD_IMAGE_V2` is added in the Makefile. Default value is 0. NOTE: `TRUSTED_BOARD_BOOT` is currently not supported when `LOAD_IMAGE_V2` is enabled. Change-Id: Ia7b643f4817a170d5a2fbf479b9bc12e63112e79
-
- 15 Sep, 2016 1 commit
-
-
Jeenu Viswambharan authored
This patch adds support for NODE_HW_STATE PSCI API by introducing a new PSCI platform hook (get_node_hw_state). The implementation validates supplied arguments, and then invokes this platform-defined hook and returns its result to the caller. PSCI capabilities are updated accordingly. Also updates porting and firmware design guides. Change-Id: I808e55bdf0c157002a7c104b875779fe50a68a30
-
- 18 Jul, 2016 1 commit
-
-
Soby Mathew authored
This patch reworks type usage in generic code, drivers and ARM platform files to make it more portable. The major changes done with respect to type usage are as listed below: * Use uintptr_t for storing address instead of uint64_t or unsigned long. * Review usage of unsigned long as it can no longer be assumed to be 64 bit. * Use u_register_t for register values whose width varies depending on whether AArch64 or AArch32. * Use generic C types where-ever possible. In addition to the above changes, this patch also modifies format specifiers in print invocations so that they are AArch64/AArch32 agnostic. Only files related to upcoming feature development have been reworked. Change-Id: I9f8c78347c5a52ba7027ff389791f1dad63ee5f8
-
- 16 Jun, 2016 1 commit
-
-
Yatharth Kochar authored
This patch adds following optional PSCI STAT functions: - PSCI_STAT_RESIDENCY: This call returns the amount of time spent in power_state in microseconds, by the node represented by the `target_cpu` and the highest level of `power_state`. - PSCI_STAT_COUNT: This call returns the number of times a `power_state` has been used by the node represented by the `target_cpu` and the highest power level of `power_state`. These APIs provides residency statistics for power states that has been used by the platform. They are implemented according to v1.0 of the PSCI specification. By default this optional feature is disabled in the PSCI implementation. To enable it, set the boolean flag `ENABLE_PSCI_STAT` to 1. This also sets `ENABLE_PMF` to 1. Change-Id: Ie62e9d37d6d416ccb1813acd7f616d1ddd3e8aff
-
- 03 Jun, 2016 2 commits
-
-
Soby Mathew authored
A production ROM with TBB enabled must have the ability to boot test software before a real ROTPK is deployed (e.g. manufacturing mode). Previously the function plat_get_rotpk_info() must return a valid ROTPK for TBB to succeed. This patch adds an additional bit `ROTPK_NOT_DEPLOYED` in the output `flags` parameter from plat_get_rotpk_info(). If this bit is set, then the ROTPK in certificate is used without verifying against the platform value. Fixes ARM-software/tf-issues#381 Change-Id: Icbbffab6bff8ed76b72431ee21337f550d8fdbbb
-
Dan Handley authored
* Move stdlib header files from include/stdlib to include/lib/stdlib for consistency with other library headers. * Fix checkpatch paths to continue excluding stdlib files. * Create stdlib.mk to define the stdlib source files and include directories. * Include stdlib.mk from the top level Makefile. * Update stdlib header path in the fip_create Makefile. * Update porting-guide.md with the new paths. Change-Id: Ia92c2dc572e9efb54a783e306b5ceb2ce24d27fa
-
- 25 May, 2016 1 commit
-
-
Soby Mathew authored
This patch adds a new optional platform hook `pwr_domain_pwr_down_wfi()` in the plat_psci_ops structure. This hook allows the platform to perform platform specific actions including the wfi invocation to enter powerdown. This hook is invoked by both psci_do_cpu_off() and psci_cpu_suspend_start() functions. The porting-guide.md is also updated for the same. This patch also modifies the `psci_power_down_wfi()` function to invoke `plat_panic_handler` incase of panic instead of the busy while loop. Fixes ARM-Software/tf-issues#375 Change-Id: Iba104469a1445ee8d59fb3a6fdd0a98e7f24dfa3
-
- 20 May, 2016 1 commit
-
-
Antonio Nino Diaz authored
Added plat_get_syscnt_freq2, which is a 32 bit variant of the 64 bit plat_get_syscnt_freq. The old one has been flagged as deprecated. Common code has been updated to use this new version. Porting guide has been updated. Change-Id: I9e913544926c418970972bfe7d81ee88b4da837e
-
- 27 Apr, 2016 2 commits
-
-
Haojian Zhuang authored
Add MAX_IO_BLOCK_DEVICES in porting guide. It's necessary to define this macro to support io block device. With this macro, multiple block devices could be opened at the same time. Each block device stores its own state. Signed-off-by: Haojian Zhuang <haojian.zhuang@linaro.org>
-
Sandrine Bailleux authored
The translation table library code has moved from lib/aarch64/ to lib/xlat_tables/ since commit 3ca9928d but the Porting Guide still points to the old location. This patch fixes this issue. Change-Id: I983a9a100d70eacf6bac71725ffbb4bb5f3732b0
-
- 14 Apr, 2016 1 commit
-
-
Gerald Lejeune authored
It is up to the platform to implement the new plat_crash_print_regs macro to report all relevant platform registers helpful for troubleshooting. plat_crash_print_regs merges or calls previously defined plat_print_gic_regs and plat_print_interconnect_regs macros for each existing platforms. NOTE: THIS COMMIT REQUIRES ALL PLATFORMS THAT ENABLE THE `CRASH_REPORTING` BUILD FLAG TO MIGRATE TO USE THE NEW `plat_crash_print_regs()` MACRO. BY DEFAULT, `CRASH_REPORTING` IS ENABLED IN DEBUG BUILDS FOR ALL PLATFORMS. Fixes: arm-software/tf-issues#373 Signed-off-by: Gerald Lejeune <gerald.lejeune@st.com>
-
- 08 Apr, 2016 1 commit
-
-
Antonio Nino Diaz authored
To avoid confusion the build option BL33_BASE has been renamed to PRELOADED_BL33_BASE, which is more descriptive of what it does and doesn't get mistaken by similar names like BL32_BASE that work in a completely different way. NOTE: PLATFORMS USING BUILD OPTION `BL33_BASE` MUST CHANGE TO THE NEW BUILD OPTION `PRELOADED_BL33_BASE`. Change-Id: I658925ebe95406edf0325f15aa1752e1782aa45b
-
- 01 Apr, 2016 1 commit
-
-
Soby Mathew authored
This patch modifies the return type of the platform API `plat_get_ns_image_entrypoint()` from `unsigned long` to `uintptr_t` in accordance with the coding guidelines. Change-Id: Icb4510ca98b706aa4d535fe27e203394184fb4ca
-
- 31 Mar, 2016 2 commits
-
-
Antonio Nino Diaz authored
lib/aarch64/xlat_helpers.c defines helper functions to build translation descriptors, but no common code or upstream platform port uses them. As the rest of the xlat_tables code evolves, there may be conflicts with these helpers, therefore this code should be removed. Change-Id: I9f5be99720f929264818af33db8dada785368711
-
Juan Castillo authored
This patch adds support for non-volatile counter authentication to the Authentication Module. This method consists of matching the counter values provided in the certificates with the ones stored in the platform. If the value from the certificate is lower than the platform, the boot process is aborted. This mechanism protects the system against rollback. The TBBR CoT has been updated to include this method as part of the authentication process. Two counters are used: one for the trusted world images and another for the non trusted world images. ** NEW PLATFORM APIs (mandatory when TBB is enabled) ** int plat_get_nv_ctr(void *cookie, unsigned int *nv_ctr); This API returns the non-volatile counter value stored in the platform. The cookie in the first argument may be used to select the counter in case the platform provides more than one (i.e. TBSA compliant platforms must provide trusted and non-trusted counters). This cookie is specified in the CoT. int plat_set_nv_ctr(void *cookie, unsigned int nv_ctr); This API sets a new counter value. The cookie may be used to select the counter to be updated. An implementation of these new APIs for ARM platforms is also provided. The values are obtained from the Trusted Non-Volatile Counters peripheral. The cookie is used to pass the extension OID. This OID may be interpreted by the platform to know which counter must return. On Juno, The trusted and non-trusted counter values have been tied to 31 and 223, respectively, and cannot be modified. ** IMPORTANT ** THIS PATCH BREAKS THE BUILD WHEN TRUSTED_BOARD_BOOT IS ENABLED. THE NEW PLATFORM APIs INTRODUCED IN THIS PATCH MUST BE IMPLEMENTED IN ORDER TO SUCCESSFULLY BUILD TF. Change-Id: Ic943b76b25f2a37f490eaaab6d87b4a8b3cbc89a
-
- 22 Mar, 2016 1 commit
-
-
Sandrine Bailleux authored
The Firmware Design document is meant to provide a general overview of the Trusted Firmware code. Although it is useful to provide some guidance around the responsibilities of the platform layer, it should not provide too much platform specific implementation details. Right now, some sections are too tied to the implementation on ARM platforms. This makes the Firmware Design document harder to digest. This patch simplifies this aspect of the Firmware Design document. The sections relating the platform initialisations performed by the different BL stages have been simplified and the extra details about the ARM platforms implementation have been moved to the Porting Guide when appropriate. This patch also provides various documentation fixes and additions in the Firmware Design and Platform Porting Guide. In particular: - Update list of SMCs supported by BL1. - Remove MMU setup from architectural inits, as it is actually performed by platform code. - Similarly, move runtime services initialisation, BL2 image initialization and BL33 execution out of the platform initialisation paragraph. - List SError interrupt unmasking as part of BL1 architectural initialization. - Mention Trusted Watchdog enabling in BL1 on ARM platforms. - Fix order of steps in "BL2 image load and execution" section. - Refresh section about GICv3/GICv2 drivers initialisation on ARM platforms. Change-Id: I32113c4ffdc26687042629cd8bbdbb34d91e3c14
-
- 14 Mar, 2016 1 commit
-
-
Antonio Nino Diaz authored
Added a new platform porting function plat_panic_handler, to allow platforms to handle unexpected error situations. It must be implemented in assembly as it may be called before the C environment is initialized. A default implementation is provided, which simply spins. Corrected all dead loops in generic code to call this function instead. This includes the dead loop that occurs at the end of the call to panic(). All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have been removed. Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
-
- 07 Mar, 2016 1 commit
-
-
Antonio Nino Diaz authored
This patch clarifies a porting API in the Porting Guide that do not follow the ARM Architecture Program Calling Standards (AAPCS). The list of registers that are allowed to be clobbered by this API has been updated in the Porting Guide. Fixes ARM-software/tf-issues#259 Change-Id: Ibf2adda2e1fb3e9b8f53d8a918d5998356eb8fce
-
- 02 Mar, 2016 1 commit
-
-
Antonio Nino Diaz authored
Enable alternative boot flow where BL2 does not load BL33 from non-volatile storage, and BL31 hands execution over to a preloaded BL33. The flag used to enable this bootflow is BL33_BASE, which must hold the entrypoint address of the BL33 image. The User Guide has been updated with an example of how to use this option with a bootwrapped kernel. Change-Id: I48087421a7b0636ac40dca7d457d745129da474f
-
- 12 Feb, 2016 1 commit
-
-
Haojian Zhuang authored
ARM PL061 GPIO driver requires the "PLAT_PL061_MAX_GPIOS" definition. By default, it's defined to 32 in PL061 GPIO driver. If user wants more PL061 controllers in platform, user should define the build flag in platform.mk instead. Signed-off-by: Haojian Zhuang <haojian.zhuang@linaro.org>
-
- 29 Jan, 2016 1 commit
-
-
Sandrine Bailleux authored
The memory translation library in Trusted Firmware supports non-identity mappings for Physical to Virtual addresses since commit f984ce84. However, the porting guide hasn't been updated accordingly and still mandates the platform ports to use identity-mapped page tables for all addresses. This patch removes this out-dated information from the Porting Guide and clarifies in which circumstances non-identity mapping may safely be used. Fixes ARM-software/tf-issues#258 Change-Id: I84dab9f3cabfc43794951b1828bfecb13049f706
-
- 21 Jan, 2016 1 commit
-
-
Juan Castillo authored
The PL011 TRM (ARM DDI 0183G) specifies that the UART must be disabled before any of the control registers are programmed. The PL011 driver included in TF does not disable the UART, so the initialization in BL2 and BL31 is violating this requirement (and potentially in BL1 if the UART is enabled after reset). This patch modifies the initialization function in the PL011 console driver to disable the UART before programming the control registers. Register clobber list and documentation updated. Fixes ARM-software/tf-issues#300 Change-Id: I839b2d681d48b03f821ac53663a6a78e8b30a1a1
-
- 18 Jan, 2016 1 commit
-
-
Yuping Luo authored
GIC v2 and v3 specification references in the porting guide should refer to publically visible links, not ARM internal links. Change-Id: Ib47c8adda6a03581f23bcaed72d71c08c7dd9fb1 Signed-off-by: Yuping Luo <yuping.luo@arm.com>
-
- 14 Jan, 2016 1 commit
-
-
Soren Brinkmann authored
Migrate all direct usage of __attribute__ to usage of their corresponding macros from cdefs.h. e.g.: - __attribute__((unused)) -> __unused Signed-off-by: Soren Brinkmann <soren.brinkmann@xilinx.com>
-
- 13 Jan, 2016 1 commit
-
-
Juan Castillo authored
This patch adds a brief description of 'MAX_MMAP_REGIONS' and 'ADDR_SPACE_SIZE' to the Porting Guide. These fields must be defined by the platform in order to use the translation table library. Change-Id: Ida366458fe2bc01979091a014dc38da0fae5991e
-
- 21 Dec, 2015 1 commit
-
-
Sandrine Bailleux authored
Change-Id: I6f49bd779f2a4d577c6443dd160290656cdbc59b
-
- 17 Dec, 2015 1 commit
-
-
Yatharth Kochar authored
This patch adds design documentation for the Firmware Update (FWU) feature in `firmware-update.md`. It provides an overview of FWU, describes the BL1 SMC interface, and includes diagrams showing an example FWU boot flow and the FWU state machine. This patch also updates the existing TF documents where needed: * `porting-guide.md` * `user-guide.md` * `firmware-design.md` * `rt-svc-writers-guide.md` * `trusted_board_boot.md` Change-Id: Ie6de31544429b18f01327bd763175e218299a4ce Co-Authored-By: Dan Handley <dan.handley@arm.com>
-
- 15 Dec, 2015 1 commit
-
-
Soby Mathew authored
This patch updates the relevant documentation in ARM Trusted Firmware for the new GIC drivers. The user-guide.md and porting-guide.md have been updated as follows: * The build option to compile Trusted Firmware with different GIC drivers for FVP has been explained in the user-guide.md. * The implementation details of interrupt management framework porting APIs for GICv3 have been added in porting-guide.md. * The Linaro tracking kernel release does not work OOB in GICv3 mode. The instructions for changing UEFI configuration in order to run with the new GICv3 driver in ARM TF have been added to user-guide.md. The interrupt-framework-design.md has been updated as follows: * Describes support for registering and handling interrupts targeted to EL3 e.g. Group 0 interrupts in GICv3. * Describes the build option `TSP_NS_INTR_ASYNC_PREEMPT` in detail. * Describes preemption of TSP in S-EL1 by non secure interrupts and also possibly by higher priority EL3 interrupts. * Describes the normal world sequence for issuing `standard` SMC calls. * Modifies the document to correspond to the current state of interrupt handling in TSPD and TSP. * Modifies the various functions names in the document to reflect the current names used in code. Change-Id: I78c9514b5be834f193405aad3c1752a4a9e27a6c
-
- 14 Dec, 2015 3 commits
-
-
Juan Castillo authored
This patch removes the dash character from the image name, to follow the image terminology in the Trusted Firmware Wiki page: https://github.com/ARM-software/arm-trusted-firmware/wiki Changes apply to output messages, comments and documentation. non-ARM platform files have been left unmodified. Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
-
Juan Castillo authored
This patch replaces all references to the SCP Firmware (BL0, BL30, BL3-0, bl30) with the image terminology detailed in the TF wiki (https://github.com/ARM-software/arm-trusted-firmware/wiki): BL0 --> SCP_BL1 BL30, BL3-0 --> SCP_BL2 bl30 --> scp_bl2 This change affects code, documentation, build system, tools and platform ports that load SCP firmware. ARM plaforms have been updated to the new porting API. IMPORTANT: build option to specify the SCP FW image has changed: BL30 --> SCP_BL2 IMPORTANT: This patch breaks compatibility for platforms that use BL2 to load SCP firmware. Affected platforms must be updated as follows: BL30_IMAGE_ID --> SCP_BL2_IMAGE_ID BL30_BASE --> SCP_BL2_BASE bl2_plat_get_bl30_meminfo() --> bl2_plat_get_scp_bl2_meminfo() bl2_plat_handle_bl30() --> bl2_plat_handle_scp_bl2() Change-Id: I24c4c1a4f0e4b9f17c9e4929da815c4069549e58
-
Juan Castillo authored
This patch applies the TBBR naming convention to the certificates and the corresponding extensions defined by the CoT: * Certificate UUID names * Certificate identifier names * OID names Changes apply to: * Generic code (variables and defines) * The default certificate identifiers provided in the generic code * Build system * ARM platforms port * cert_create tool internal definitions * fip_create and cert_create tools command line options * Documentation IMPORTANT: this change breaks the compatibility with platforms that use TBBR. The platform will need to adapt the identifiers and OIDs to the TBBR naming convention introduced by this patch: Certificate UUIDs: UUID_TRUSTED_BOOT_FIRMWARE_BL2_CERT --> UUID_TRUSTED_BOOT_FW_CERT UUID_SCP_FIRMWARE_BL30_KEY_CERT --> UUID_SCP_FW_KEY_CERT UUID_SCP_FIRMWARE_BL30_CERT --> UUID_SCP_FW_CONTENT_CERT UUID_EL3_RUNTIME_FIRMWARE_BL31_KEY_CERT --> UUID_SOC_FW_KEY_CERT UUID_EL3_RUNTIME_FIRMWARE_BL31_CERT --> UUID_SOC_FW_CONTENT_CERT UUID_SECURE_PAYLOAD_BL32_KEY_CERT --> UUID_TRUSTED_OS_FW_KEY_CERT UUID_SECURE_PAYLOAD_BL32_CERT --> UUID_TRUSTED_OS_FW_CONTENT_CERT UUID_NON_TRUSTED_FIRMWARE_BL33_KEY_CERT --> UUID_NON_TRUSTED_FW_KEY_CERT UUID_NON_TRUSTED_FIRMWARE_BL33_CERT --> UUID_NON_TRUSTED_FW_CONTENT_CERT Certificate identifiers: BL2_CERT_ID --> TRUSTED_BOOT_FW_CERT_ID BL30_KEY_CERT_ID --> SCP_FW_KEY_CERT_ID BL30_CERT_ID --> SCP_FW_CONTENT_CERT_ID BL31_KEY_CERT_ID --> SOC_FW_KEY_CERT_ID BL31_CERT_ID --> SOC_FW_CONTENT_CERT_ID BL32_KEY_CERT_ID --> TRUSTED_OS_FW_KEY_CERT_ID BL32_CERT_ID --> TRUSTED_OS_FW_CONTENT_CERT_ID BL33_KEY_CERT_ID --> NON_TRUSTED_FW_KEY_CERT_ID BL33_CERT_ID --> NON_TRUSTED_FW_CONTENT_CERT_ID OIDs: TZ_FW_NVCOUNTER_OID --> TRUSTED_FW_NVCOUNTER_OID NTZ_FW_NVCOUNTER_OID --> NON_TRUSTED_FW_NVCOUNTER_OID BL2_HASH_OID --> TRUSTED_BOOT_FW_HASH_OID TZ_WORLD_PK_OID --> TRUSTED_WORLD_PK_OID NTZ_WORLD_PK_OID --> NON_TRUSTED_WORLD_PK_OID BL30_CONTENT_CERT_PK_OID --> SCP_FW_CONTENT_CERT_PK_OID BL30_HASH_OID --> SCP_FW_HASH_OID BL31_CONTENT_CERT_PK_OID --> SOC_FW_CONTENT_CERT_PK_OID BL31_HASH_OID --> SOC_AP_FW_HASH_OID BL32_CONTENT_CERT_PK_OID --> TRUSTED_OS_FW_CONTENT_CERT_PK_OID BL32_HASH_OID --> TRUSTED_OS_FW_HASH_OID BL33_CONTENT_CERT_PK_OID --> NON_TRUSTED_FW_CONTENT_CERT_PK_OID BL33_HASH_OID --> NON_TRUSTED_WORLD_BOOTLOADER_HASH_OID BL2U_HASH_OID --> AP_FWU_CFG_HASH_OID SCP_BL2U_HASH_OID --> SCP_FWU_CFG_HASH_OID NS_BL2U_HASH_OID --> FWU_HASH_OID Change-Id: I1e047ae046299ca913911c39ac3a6e123bd41079
-
- 09 Dec, 2015 2 commits
-
-
Soby Mathew authored
This patch overrides the default weak definition of `bl31_plat_runtime_setup()` for ARM Standard platforms to specify a BL31 runtime console. ARM Standard platforms are now expected to define `PLAT_ARM_BL31_RUN_UART_BASE` and `PLAT_ARM_BL31_RUN_UART_CLK_IN_HZ` macros which is required by `arm_bl31_plat_runtime_setup()` to initialize the runtime console. The system suspend resume helper `arm_system_pwr_domain_resume()` is fixed to initialize the runtime console rather than the boot console on resumption from system suspend. Fixes ARM-software/tf-issues#220 Change-Id: I80eafe5b6adcfc7f1fdf8b99659aca1c64d96975
-
Soby Mathew authored
It is not ideal for BL31 to continue to use boot console at runtime which could be potentially uninitialized. This patch introduces a new optional platform porting API `bl31_plat_runtime_setup()` which allows the platform to perform any BL31 runtime setup just prior to BL31 exit during cold boot. The default weak implementation of this function will invoke `console_uninit()` which will suppress any BL31 runtime logs. On the ARM Standard platforms, there is an anomaly that the boot console will be reinitialized on resumption from system suspend in `arm_system_pwr_domain_resume()`. This will be resolved in the following patch. NOTE: The default weak definition of `bl31_plat_runtime_setup()` disables the BL31 console. To print the BL31 runtime messages, platforms must override this API and initialize a runtime console. Fixes ARM-software/tf-issues#328 Change-Id: Ibaf8346fcceb447fe1a5674094c9f8eb4c09ac4a
-
- 26 Nov, 2015 5 commits
-
-
Sandrine Bailleux authored
This patch introduces a new build option named COLD_BOOT_SINGLE_CPU, which allows platforms that only release a single CPU out of reset to slightly optimise their cold boot code, both in terms of code size and performance. COLD_BOOT_SINGLE_CPU defaults to 0, which assumes that the platform may release several CPUs out of reset. In this case, the cold reset code needs to coordinate all CPUs via the usual primary/secondary CPU distinction. If a platform guarantees that only a single CPU will ever be released out of reset, there is no need to arbitrate execution ; the notion of primary and secondary CPUs itself no longer exists. Such platforms may set COLD_BOOT_SINGLE_CPU to 1 in order to compile out the primary/secondary CPU identification in the cold reset code. All ARM standard platforms can release several CPUs out of reset so they use COLD_BOOT_SINGLE_CPU=0. However, on CSS platforms like Juno, bringing up more than one CPU at reset should only be attempted when booting an EL3 payload, as it is not fully supported in the normal boot flow. For platforms using COLD_BOOT_SINGLE_CPU=1, the following 2 platform APIs become optional: - plat_secondary_cold_boot_setup(); - plat_is_my_cpu_primary(). The Porting Guide has been updated to reflect that. User Guide updated as well. Change-Id: Ic5b474e61b7aec1377d1e0b6925d17dfc376c46b
-
Sandrine Bailleux authored
Normally, in the FVP port, secondary CPUs are immediately powered down if they are powered on at reset. However, when booting an EL3 payload, we need to keep them powered on as the requirement is for all CPUs to enter the EL3 payload image. This patch puts them in a holding pen instead of powering them off. Change-Id: I6526a88b907a0ddb820bead72f1d350a99b1692c
-
Sandrine Bailleux authored
This patch adds support for booting EL3 payloads on CSS platforms, for example Juno. In this scenario, the Trusted Firmware follows its normal boot flow up to the point where it would normally pass control to the BL31 image. At this point, it jumps to the EL3 payload entry point address instead. Before handing over to the EL3 payload, the data SCP writes for AP at the beginning of the Trusted SRAM is restored, i.e. we zero the first 128 bytes and restore the SCP Boot configuration. The latter is saved before transferring the BL30 image to SCP and is restored just after the transfer (in BL2). The goal is to make it appear that the EL3 payload is the first piece of software to run on the target. The BL31 entrypoint info structure is updated to make the primary CPU jump to the EL3 payload instead of the BL31 image. The mailbox is populated with the EL3 payload entrypoint address, which releases the secondary CPUs out of their holding pen (if the SCP has powered them on). The arm_program_trusted_mailbox() function has been exported for this purpose. The TZC-400 configuration in BL2 is simplified: it grants secure access only to the whole DRAM. Other security initialization is unchanged. This alternative boot flow is disabled by default. A new build option EL3_PAYLOAD_BASE has been introduced to enable it and provide the EL3 payload's entry point address. The build system has been modified such that BL31 and BL33 are not compiled and/or not put in the FIP in this case, as those images are not used in this boot flow. Change-Id: Id2e26fa57988bbc32323a0effd022ab42f5b5077
-
Sandrine Bailleux authored
This patch modifies the prototype of the bl1_plat_prepare_exit() platform API to pass the address of the entry point info structure received from BL2. The structure contains information that can be useful, depending on the kind of clean up or bookkeeping operations to perform. The weak implementation of this function ignores this argument to preserve platform backwards compatibility. NOTE: THIS PATCH MAY BREAK PLATFORM PORTS THAT ARE RELYING ON THE FORMER PROTOTYPE OF THE BL1_PLAT_PREPARE_EXIT() API. Change-Id: I3fc18f637de06c85719c4ee84c85d6a4572a0fdb
-
Soby Mathew authored
The IMF_READ_INTERRUPT_ID build option enables a feature where the interrupt ID of the highest priority pending interrupt is passed as a parameter to the interrupt handler registered for that type of interrupt. This additional read of highest pending interrupt id from GIC is problematic as it is possible that the original interrupt may get deasserted and another interrupt of different type maybe become the highest pending interrupt. Hence it is safer to prevent such behaviour by removing the IMF_READ_INTERRUPT_ID build option. The `id` parameter of the interrupt handler `interrupt_type_handler_t` is now made a reserved parameter with this patch. It will always contain INTR_ID_UNAVAILABLE. Fixes ARM-software/tf-issues#307 Change-Id: I2173aae1dd37edad7ba6bdfb1a99868635fa34de
-
- 28 Oct, 2015 1 commit
-
-
Juan Castillo authored
This patch adds an optional API to the platform port: void plat_error_handler(int err) __dead2; The platform error handler is called when there is a specific error condition after which Trusted Firmware cannot continue. While panic() simply prints the crash report (if enabled) and spins, the platform error handler can be used to hand control over to the platform port so it can perform specific bookeeping or post-error actions (for example, reset the system). This function must not return. The parameter indicates the type of error using standard codes from errno.h. Possible errors reported by the generic code are: -EAUTH : a certificate or image could not be authenticated (when Trusted Board Boot is enabled) -ENOENT : the requested image or certificate could not be found or an IO error was detected -ENOMEM : resources exhausted. Trusted Firmware does not use dynamic memory, so this error is usually an indication of an incorrect array size A default weak implementation of this function has been provided. It simply implements an infinite loop. Change-Id: Iffaf9eee82d037da6caa43b3aed51df555e597a3
-
- 27 Oct, 2015 1 commit
-
-
Juan Castillo authored
This patch is a complete rework of the main Makefile. Functionality remains the same but the code has been reorganized in sections in order to improve readability and facilitate adding future extensions. A new file 'build_macros.mk' has been created and will contain common definitions (variables, macros, etc) that may be used from the main Makefile and other platform specific makefiles. A new macro 'FIP_ADD_IMG' has been introduced and it will allow the platform to specify binary images and the necessary checks for a successful build. Platforms that require a BL30 image no longer need to specify the NEED_BL30 option. The main Makefile is now completely unaware of additional images not built as part of Trusted Firmware, like BL30. It is the platform responsibility to specify images using the macro 'FIP_ADD_IMG'. Juno uses this macro to include the BL30 image in the build. BL33 image is specified in the main Makefile to preserve backward compatibility with the NEED_BL33 option. Otherwise, platform ports that rely on the definition of NEED_BL33 might break. All Trusted Board Boot related definitions have been moved to a separate file 'tbbr_tools.mk'. The main Makefile will include this file unless the platform indicates otherwise by setting the variable 'INCLUDE_TBBR_MK := 0' in the corresponding platform.mk file. This will keep backward compatibility but ideally each platform should include the corresponding TBB .mk file in platform.mk. Change-Id: I35e7bc9930d38132412e950e20aa2a01e2b26801
-