- 11 Jul, 2018 1 commit
-
-
Roberto Vargas authored
Clang linker doesn't support NEXT. As we are not using the MEMORY command to define discontinuous memory for the output file in any of the linker scripts, ALIGN and NEXT are equivalent. Change-Id: I867ffb9c9a76d4e81c9ca7998280b2edf10efea0 Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
-
- 27 Jun, 2018 1 commit
-
-
Jeenu Viswambharan authored
Previously, data caches were disabled while enabling MMU only because of active stack. Now that we can enable MMU without using stack, we can enable both MMU and data caches at the same time. Change-Id: I73f3b8bae5178610e17e9ad06f81f8f6f97734a6 Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 27 Apr, 2018 1 commit
-
-
Masahiro Yamada authored
Since commit 031dbb12 ("AArch32: Add essential Arch helpers"), it is difficult to use consistent format strings for printf() family between aarch32 and aarch64. For example, uint64_t is defined as 'unsigned long long' for aarch32 and as 'unsigned long' for aarch64. Likewise, uintptr_t is defined as 'unsigned int' for aarch32, and as 'unsigned long' for aarch64. A problem typically arises when you use printf() in common code. One solution could be, to cast the arguments to a type long enough for both architectures. For example, if 'val' is uint64_t type, like this: printf("val = %llx\n", (unsigned long long)val); Or, somebody may suggest to use a macro provided by <inttypes.h>, like this: printf("val = %" PRIx64 "\n", val); But, both would make the code ugly. The solution adopted in Linux kernel is to use the same typedefs for all architectures. The fixed integer types in the kernel-space have been unified into int-ll64, like follows: typedef signed char int8_t; typedef unsigned char uint8_t; typedef signed short int16_t; typedef unsigned short uint16_t; typedef signed int int32_t; typedef unsigned int uint32_t; typedef signed long long int64_t; typedef unsigned long long uint64_t; [ Linux commit: 0c79a8e29b5fcbcbfd611daf9d500cfad8370fcf ] This gets along with the codebase shared between 32 bit and 64 bit, with the data model called ILP32, LP64, respectively. The width for primitive types is defined as follows: ILP32 LP64 int 32 32 long 32 64 long long 64 64 pointer 32 64 'long long' is 64 bit for both, so it is used for defining uint64_t. 'long' has the same width as pointer, so for uintptr_t. We still need an ifdef conditional for (s)size_t. All 64 bit architectures use "unsigned long" size_t, and most 32 bit architectures use "unsigned int" size_t. H8/300, S/390 are known as exceptions; they use "unsigned long" size_t despite their architecture is 32 bit. One idea for simplification might be to define size_t as 'unsigned long' across architectures, then forbid the use of "%z" string format. However, this would cause a distortion between size_t and sizeof() operator. We have unknowledge about the native type of sizeof(), so we need a guess of it anyway. I want the following formula to always return 1: __builtin_types_compatible_p(size_t, typeof(sizeof(int))) Fortunately, ARM is probably a majority case. As far as I know, all 32 bit ARM compilers use "unsigned int" size_t. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
-
- 13 Apr, 2018 2 commits
-
-
Roberto Vargas authored
Rule 8.4: A compatible declaration shall be visible when an object or function with external linkage is defined Fixed for: make DEBUG=1 PLAT=fvp SPD=tspd all Change-Id: I0a16cf68fef29cf00ec0a52e47786f61d02ca4ae Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
-
Roberto Vargas authored
Rule 8.3: All declarations of an object or function shall use the same names and type qualifiers Fixed for: make DEBUG=1 PLAT=fvp SPD=tspd all Change-Id: I4e31c93d502d433806dfc521479d5d428468b37c Signed-off-by: Roberto Vargas <roberto.vargas@arm.com>
-
- 27 Feb, 2018 1 commit
-
-
Antonio Nino Diaz authored
When the MMU is enabled and the translation tables are mapped, data read/writes to the translation tables are made using the attributes specified in the translation tables themselves. However, the MMU performs table walks with the attributes specified in TCR_ELx. They are completely independent, so special care has to be taken to make sure that they are the same. This has to be done manually because it is not practical to have a test in the code. Such a test would need to know the virtual memory region that contains the translation tables and check that for all of the tables the attributes match the ones in TCR_ELx. As the tables may not even be mapped at all, this isn't a test that can be made generic. The flags used by enable_mmu_xxx() have been moved to the same header where the functions are. Also, some comments in the linker scripts related to the translation tables have been fixed. Change-Id: I1754768bffdae75f53561b1c4a5baf043b45a304 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 29 Nov, 2017 1 commit
-
-
Antonio Nino Diaz authored
When defining different sections in linker scripts it is needed to align them to multiples of the page size. In most linker scripts this is done by aligning to the hardcoded value 4096 instead of PAGE_SIZE. This may be confusing when taking a look at all the codebase, as 4096 is used in some parts that aren't meant to be a multiple of the page size. Change-Id: I36c6f461c7782437a58d13d37ec8b822a1663ec1 Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 21 Aug, 2017 1 commit
-
-
Julius Werner authored
Some error paths that lead to a crash dump will overwrite the value in the x30 register by calling functions with the no_ret macro, which resolves to a BL instruction. This is not very useful and not what the reader would expect, since a crash dump should usually show all registers in the state they were in when the exception happened. This patch replaces the offending function calls with a B instruction to preserve the value in x30. Change-Id: I2a3636f2943f79bab0cd911f89d070012e697c2a Signed-off-by: Julius Werner <jwerner@chromium.org>
-
- 15 Aug, 2017 1 commit
-
-
Julius Werner authored
Assembler programmers are used to being able to define functions with a specific aligment with a pattern like this: .align X myfunction: However, this pattern is subtly broken when instead of a direct label like 'myfunction:', you use the 'func myfunction' macro that's standard in Trusted Firmware. Since the func macro declares a new section for the function, the .align directive written above it actually applies to the *previous* section in the assembly file, and the function it was supposed to apply to is linked with default alignment. An extreme case can be seen in Rockchip's plat_helpers.S which contains this code: [...] endfunc plat_crash_console_putc .align 16 func platform_cpu_warmboot [...] This assembles into the following plat_helpers.o: Sections: Idx Name Size [...] Algn 9 .text.plat_crash_console_putc 00010000 [...] 2**16 10 .text.platform_cpu_warmboot 00000080 [...] 2**3 As can be seen, the *previous* function actually got the alignment constraint, and it is also 64KB big even though it contains only two instructions, because the .align directive at the end of its section forces the assembler to insert a giant sled of NOPs. The function we actually wanted to align has the default constraint. This code only works at all because the linker just happens to put the two functions right behind each other when linking the final image, and since the end of plat_crash_console_putc is aligned the start of platform_cpu_warmboot will also be. But it still wastes almost 64KB of image space unnecessarily, and it will break under certain circumstances (e.g. if the plat_crash_console_putc function becomes unused and its section gets garbage-collected out). There's no real way to fix this with the existing func macro. Code like func myfunc .align X happens to do the right thing, but is still not really correct code (because the function label is inserted before the .align directive, so the assembler is technically allowed to insert padding at the beginning of the function which would then get executed as instructions if the function was called). Therefore, this patch adds a new parameter with a default value to the func macro that allows overriding its alignment. Also fix up all existing instances of this dangerous antipattern. Change-Id: I5696a07e2fde896f21e0e83644c95b7b6ac79a10 Signed-off-by: Julius Werner <jwerner@chromium.org>
-
- 03 May, 2017 1 commit
-
-
dp-arm authored
To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
-
- 26 Apr, 2017 1 commit
-
-
David Cunado authored
Since Issue B (November 2016) of the SMC Calling Convention document standard SMC calls are renamed to yielding SMC calls to help avoid confusion with the standard service SMC range, which remains unchanged. http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf This patch adds a new define for yielding SMC call type and deprecates the current standard SMC call type. The tsp is migrated to use this new terminology and, additionally, the documentation and code comments are updated to use this new terminology. Change-Id: I0d7cc0224667ee6c050af976745f18c55906a793 Signed-off-by: David Cunado <david.cunado@arm.com>
-
- 31 Mar, 2017 1 commit
-
-
Douglas Raillard authored
Introduce new build option ENABLE_STACK_PROTECTOR. It enables compilation of all BL images with one of the GCC -fstack-protector-* options. A new platform function plat_get_stack_protector_canary() is introduced. It returns a value that is used to initialize the canary for stack corruption detection. Returning a random value will prevent an attacker from predicting the value and greatly increase the effectiveness of the protection. A message is printed at the ERROR level when a stack corruption is detected. To be effective, the global data must be stored at an address lower than the base of the stacks. Failure to do so would allow an attacker to overwrite the canary as part of an attack which would void the protection. FVP implementation of plat_get_stack_protector_canary is weak as there is no real source of entropy on the FVP. It therefore relies on a timer's value, which could be predictable. Change-Id: Icaaee96392733b721fa7c86a81d03660d3c1bc06 Signed-off-by: Douglas Raillard <douglas.raillard@arm.com>
-
- 08 Mar, 2017 1 commit
-
-
Antonio Nino Diaz authored
The files affected by this patch don't really depend on `xlat_tables.h`. By changing the included file it becomes easier to switch between the two versions of the translation tables library. Change-Id: Idae9171c490e0865cb55883b19eaf942457c4ccc Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
-
- 06 Feb, 2017 1 commit
-
-
Douglas Raillard authored
Introduce zeromem_dczva function on AArch64 that can handle unaligned addresses and make use of DC ZVA instruction to zero a whole block at a time. This zeroing takes place directly in the cache to speed it up without doing external memory access. Remove the zeromem16 function on AArch64 and replace it with an alias to zeromem. This zeromem16 function is now deprecated. Remove the 16-bytes alignment constraint on __BSS_START__ in firmware-design.md as it is now not mandatory anymore (it used to comply with zeromem16 requirements). Change the 16-bytes alignment constraints in SP min's linker script to a 8-bytes alignment constraint as the AArch32 zeromem implementation is now more efficient on 8-bytes aligned addresses. Introduce zero_normalmem and zeromem helpers in platform agnostic header that are implemented this way: * AArch32: * zero_normalmem: zero using usual data access * zeromem: alias for zero_normalmem * AArch64: * zero_normalmem: zero normal memory using DC ZVA instruction (needs MMU enabled) * zeromem: zero using usual data access Usage guidelines: in most cases, zero_normalmem should be preferred. There are 2 scenarios where zeromem (or memset) must be used instead: * Code that must run with MMU disabled (which means all memory is considered device memory for data accesses). * Code that fills device memory with null bytes. Optionally, the following rule can be applied if performance is important: * Code zeroing small areas (few bytes) that are not secrets should use memset to take advantage of compiler optimizations. Note: Code zeroing security-related critical information should use zero_normalmem/zeromem instead of memset to avoid removal by compilers' optimizations in some cases or misbehaving versions of GCC. Fixes ARM-software/tf-issues#408 Change-Id: Iafd9663fc1070413c3e1904e54091cf60effaa82 Signed-off-by: Douglas Raillard <douglas.raillard@arm.com>
-
- 23 Dec, 2016 1 commit
-
-
Douglas Raillard authored
Standard SMC requests that are handled in the secure-world by the Secure Payload can be preempted by interrupts that must be handled in the normal world. When the TSP is preempted the secure context is stored and control is passed to the normal world to handle the non-secure interrupt. Once completed the preempted secure context is restored. When restoring the preempted context, the dispatcher assumes that the TSP preempted context is still stored as the SECURE context by the context management library. However, PSCI power management operations causes synchronous entry into TSP. This overwrites the preempted SECURE context in the context management library. When restoring back the SECURE context, the Secure Payload crashes because this context is not the preempted context anymore. This patch avoids corruption of the preempted SECURE context by aborting any preempted SMC during PSCI power management calls. The abort_std_smc_entry hook of the TSP is called when aborting the SMC request. It also exposes this feature as a FAST SMC callable from normal world to abort preempted SMC with FID TSP_FID_ABORT. Change-Id: I7a70347e9293f47d87b5de20484b4ffefb56b770 Signed-off-by: Douglas Raillard <douglas.raillard@arm.com>
-
- 05 Dec, 2016 1 commit
-
-
Jeenu Viswambharan authored
There are many instances in ARM Trusted Firmware where control is transferred to functions from which return isn't expected. Such jumps are made using 'bl' instruction to provide the callee with the location from which it was jumped to. Additionally, debuggers infer the caller by examining where 'lr' register points to. If a 'bl' of the nature described above falls at the end of an assembly function, 'lr' will be left pointing to a location outside of the function range. This misleads the debugger back trace. This patch defines a 'no_ret' macro to be used when jumping to functions from which return isn't expected. The macro ensures to use 'bl' instruction for the jump, and also, for debug builds, places a 'nop' instruction immediately thereafter (unless instructed otherwise) so as to leave 'lr' pointing within the function range. Change-Id: Ib34c69fc09197cfd57bc06e147cc8252910e01b0 Co-authored-by: Douglas Raillard <douglas.raillard@arm.com> Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
-
- 09 Aug, 2016 1 commit
-
-
Soby Mathew authored
This patch moves the assembly exclusive lock library code `spinlock.S` into architecture specific folder `aarch64`. A stub file which includes the file from new location is retained at the original location for compatibility. The BL makefiles are also modified to include the file from the new location. Change-Id: Ide0b601b79c439e390c3a017d93220a66be73543
-
- 08 Jul, 2016 2 commits
-
-
Sandrine Bailleux authored
In debug builds, the TSP prints its image base address and size. The base address displayed corresponds to the start address of the read-only section, as defined in the linker script. This patch changes this to use the BL32_BASE address instead, which is the same address as __RO_START__ at the moment but has the advantage to be independent of the linker symbols defined in the linker script as well as the layout and order of the sections. Change-Id: I032d8d50df712c014cbbcaa84a9615796ec902cc
-
Sandrine Bailleux authored
At the moment, all BL images share a similar memory layout: they start with their code section, followed by their read-only data section. The two sections are contiguous in memory. Therefore, the end of the code section and the beginning of the read-only data one might share a memory page. This forces both to be mapped with the same memory attributes. As the code needs to be executable, this means that the read-only data stored on the same memory page as the code are executable as well. This could potentially be exploited as part of a security attack. This patch introduces a new build flag called SEPARATE_CODE_AND_RODATA, which isolates the code and read-only data on separate memory pages. This in turn allows independent control of the access permissions for the code and read-only data. This has an impact on memory footprint, as padding bytes need to be introduced between the code and read-only data to ensure the segragation of the two. To limit the memory cost, the memory layout of the read-only section has been changed in this case. - When SEPARATE_CODE_AND_RODATA=0, the layout is unchanged, i.e. the read-only section still looks like this (padding omitted): | ... | +-------------------+ | Exception vectors | +-------------------+ | Read-only data | +-------------------+ | Code | +-------------------+ BLx_BASE In this case, the linker script provides the limits of the whole read-only section. - When SEPARATE_CODE_AND_RODATA=1, the exception vectors and read-only data are swapped, such that the code and exception vectors are contiguous, followed by the read-only data. This gives the following new layout (padding omitted): | ... | +-------------------+ | Read-only data | +-------------------+ | Exception vectors | +-------------------+ | Code | +-------------------+ BLx_BASE In this case, the linker script now exports 2 sets of addresses instead: the limits of the code and the limits of the read-only data. Refer to the Firmware Design guide for more details. This provides platform code with a finer-grained view of the image layout and allows it to map these 2 regions with the appropriate access permissions. Note that SEPARATE_CODE_AND_RODATA applies to all BL images. Change-Id: I936cf80164f6b66b6ad52b8edacadc532c935a49
-
- 26 May, 2016 1 commit
-
-
Sandrine Bailleux authored
This patch introduces some assembler macros to simplify the declaration of the exception vectors. It abstracts the section the exception code is put into as well as the alignments constraints mandated by the ARMv8 architecture. For all TF images, the exception code has been updated to make use of these macros. This patch also updates some invalid comments in the exception vector code. Change-Id: I35737b8f1c8c24b6da89b0a954c8152a4096fa95
-
- 01 Apr, 2016 1 commit
-
-
Evan Lloyd authored
As an initial stage of making Trusted Firmware build environment more portable, we remove most uses of the $(shell ) function and replace them with more portable make function based solutions. Note that the setting of BUILD_STRING still uses $(shell ) since it's not possible to reimplement this as a make function. Avoiding invocation of this on incompatible host platforms will be implemented separately. Change-Id: I768e2f9a265c78814a4adf2edee4cc46cda0f5b8
-
- 14 Mar, 2016 1 commit
-
-
Antonio Nino Diaz authored
Added a new platform porting function plat_panic_handler, to allow platforms to handle unexpected error situations. It must be implemented in assembly as it may be called before the C environment is initialized. A default implementation is provided, which simply spins. Corrected all dead loops in generic code to call this function instead. This includes the dead loop that occurs at the end of the call to panic(). All unnecesary wfis from bl32/tsp/aarch64/tsp_exceptions.S have been removed. Change-Id: I67cb85f6112fa8e77bd62f5718efcef4173d8134
-
- 14 Dec, 2015 1 commit
-
-
Juan Castillo authored
This patch removes the dash character from the image name, to follow the image terminology in the Trusted Firmware Wiki page: https://github.com/ARM-software/arm-trusted-firmware/wiki Changes apply to output messages, comments and documentation. non-ARM platform files have been left unmodified. Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
-
- 09 Dec, 2015 1 commit
-
-
Soby Mathew authored
Earlier the TSP only ever expected to be preempted during Standard SMC processing. If a S-EL1 interrupt triggered while in the normal world, it will routed to S-EL1 `synchronously` for handling. The `synchronous` S-EL1 interrupt handler `tsp_sel1_intr_entry` used to panic if this S-EL1 interrupt was preempted by another higher priority pending interrupt which should be handled in EL3 e.g. Group0 interrupt in GICv3. With this patch, the `tsp_sel1_intr_entry` now expects `TSP_PREEMPTED` as the return code from the `tsp_common_int_handler` in addition to 0 (interrupt successfully handled) and in both cases it issues an SMC with id `TSP_HANDLED_S_EL1_INTR`. The TSPD switches the context and returns back to normal world. In case a higher priority EL3 interrupt was pending, the execution will be routed to EL3 where interrupt will be handled. On return back to normal world, the pending S-EL1 interrupt which was preempted will get routed to S-EL1 to be handled `synchronously` via `tsp_sel1_intr_entry`. Change-Id: I2087c7fedb37746fbd9200cdda9b6dba93e16201
-
- 04 Dec, 2015 2 commits
-
-
Soby Mathew authored
On a GICv2 system, interrupts that should be handled in the secure world are typically signalled as FIQs. On a GICv3 system, these interrupts are signalled as IRQs instead. The mechanism for handling both types of interrupts is the same in both cases. This patch enables the TSP to run on a GICv3 system by: 1. adding support for handling IRQs in the exception handling code. 2. removing use of "fiq" in the names of data structures, macros and functions. The build option TSPD_ROUTE_IRQ_TO_EL3 is deprecated and is replaced with a new build flag TSP_NS_INTR_ASYNC_PREEMPT. For compatibility reasons, if the former build flag is defined, it will be used to define the value for the new build flag. The documentation is also updated accordingly. Change-Id: I1807d371f41c3656322dd259340a57649833065e
-
Soby Mathew authored
The TSP is expected to pass control back to EL3 if it gets preempted due to an interrupt while handling a Standard SMC in the following scenarios: 1. An FIQ preempts Standard SMC execution and that FIQ is not a TSP Secure timer interrupt or is preempted by a higher priority interrupt by the time the TSP acknowledges it. In this case, the TSP issues an SMC with the ID as `TSP_EL3_FIQ`. Currently this case is never expected to happen as only the TSP Secure Timer is expected to generate FIQ. 2. An IRQ preempts Standard SMC execution and in this case the TSP issues an SMC with the ID as `TSP_PREEMPTED`. In both the cases, the TSPD hands control back to the normal world and returns returns an error code to the normal world to indicate that the standard SMC it had issued has been preempted but not completed. This patch unifies the handling of these two cases in the TSPD and ensures that the TSP only uses TSP_PREEMPTED instead of separate SMC IDs. Also instead of 2 separate error codes, SMC_PREEMPTED and TSP_EL3_FIQ, only SMC_PREEMPTED is returned as error code back to the normal world. Background information: On a GICv3 system, when the secure world has affinity routing enabled, in 2. an FIQ will preempt TSP execution instead of an IRQ. The FIQ could be a result of a Group 0 or a Group 1 NS interrupt. In both case, the TSPD passes control back to the normal world upon receipt of the TSP_PREEMPTED SMC. A Group 0 interrupt will immediately preempt execution to EL3 where it will be handled. This allows for unified interrupt handling in TSP for both GICv3 and GICv2 systems. Change-Id: I9895344db74b188021e3f6a694701ad272fb40d4
-
- 14 Sep, 2015 1 commit
-
-
Achin Gupta authored
On the ARMv8 architecture, cache maintenance operations by set/way on the last level of integrated cache do not affect the system cache. This means that such a flush or clean operation could result in the data being pushed out to the system cache rather than main memory. Another CPU could access this data before it enables its data cache or MMU. Such accesses could be serviced from the main memory instead of the system cache. If the data in the sysem cache has not yet been flushed or evicted to main memory then there could be a loss of coherency. The only mechanism to guarantee that the main memory will be updated is to use cache maintenance operations to the PoC by MVA(See section D3.4.11 (System level caches) of ARMv8-A Reference Manual (Issue A.g/ARM DDI0487A.G). This patch removes the reliance of Trusted Firmware on the flush by set/way operation to ensure visibility of data in the main memory. Cache maintenance operations by MVA are now used instead. The following are the broad category of changes: 1. The RW areas of BL2/BL31/BL32 are invalidated by MVA before the C runtime is initialised. This ensures that any stale cache lines at any level of cache are removed. 2. Updates to global data in runtime firmware (BL31) by the primary CPU are made visible to secondary CPUs using a cache clean operation by MVA. 3. Cache maintenance by set/way operations are only used prior to power down. NOTE: NON-UPSTREAM TRUSTED FIRMWARE CODE SHOULD MAKE EQUIVALENT CHANGES IN ORDER TO FUNCTION CORRECTLY ON PLATFORMS WITH SUPPORT FOR SYSTEM CACHES. Fixes ARM-software/tf-issues#205 Change-Id: I64f1b398de0432813a0e0881d70f8337681f6e9a
-
- 10 Sep, 2015 1 commit
-
-
Achin Gupta authored
In certain Trusted OS implementations it is a requirement to pass them the highest power level which will enter a power down state during a PSCI CPU_SUSPEND or SYSTEM_SUSPEND API invocation. This patch passes this power level to the SPD in the "max_off_pwrlvl" parameter of the svc_suspend() hook. Currently, the highest power level which was requested to be placed in a low power state (retention or power down) is passed to the SPD svc_suspend_finish() hook. This hook is called after emerging from the low power state. It is more useful to pass the highest power level which was powered down instead. This patch does this by changing the semantics of the parameter passed to an SPD's svc_suspend_finish() hook. The name of the parameter has been changed from "suspend_level" to "max_off_pwrlvl" as well. Same changes have been made to the parameter passed to the tsp_cpu_resume_main() function. NOTE: THIS PATCH CHANGES THE SEMANTICS OF THE EXISTING "svc_suspend_finish()" API BETWEEN THE PSCI AND SPD/SP IMPLEMENTATIONS. THE LATTER MIGHT NEED UPDATES TO ENSURE CORRECT BEHAVIOUR. Change-Id: If3a9d39b13119bbb6281f508a91f78a2f46a8b90
-
- 13 Aug, 2015 1 commit
-
-
Soby Mathew authored
The new PSCI frameworks mandates that the platform APIs and the various frameworks in Trusted Firmware migrate away from MPIDR based core identification to one based on core index. Deprecated versions of the old APIs are still present to provide compatibility but their implementations are not optimal. This patch migrates the various SPDs exisiting within Trusted Firmware tree and TSP to the new APIs. Change-Id: Ifc37e7071c5769b5ded21d0b6a071c8c4cab7836
-
- 28 Apr, 2015 2 commits
-
-
Dan Handley authored
Add extern declarations of linker symbols to bl_common.h. These are used by platform ports to determine the memory layout of BL images. Adding the declarations to this file facilitates removal of these declarations from the platform porting source files in subsequent patches. Also remove the linker symbol declarations from common TSP source code. Change-Id: I8ed0426bc815317c4536b588e4e78bc15b4fe91c
-
Dan Handley authored
Update the top level makefile to allow platform ports to exist in subdirectories at any level instead of one level under `plat/`. The makefile recursively searches for all files called `platform.mk` in all subdirectories of `plat/`. The directory containing `platform.mk` is the platform name. Platform names must be unique across the codebase. Replace usage of HELP_PLATFORMS in the Makefile with PLATFORMS since these are both used to report the same information back to the user. Update the TSP and cert_create tool makefiles in a similar way to support a deeper platform port directory structure. Also add PLAT_<plat_name> as a define passed through the top level makefile to the source files, to allow build time variation in common platform code. Change-Id: I213420164808c5ddb99a26144e8e3f141a7417b7
-
- 27 Apr, 2015 1 commit
-
-
Dan Handley authored
Commit dad25049 adds support for type checking in printf-like functions. Some of the VERBOSE logging statements were not updated at that time. Fix the type mismatches in the verbose logging statements. Change-Id: Idd9a49e41cc0dc31f7698e220819d934e3d2d10e
-
- 08 Apr, 2015 1 commit
-
-
Kévin Petit authored
In order for the symbol table in the ELF file to contain the size of functions written in assembly, it is necessary to report it to the assembler using the .size directive. To fulfil the above requirements, this patch introduces an 'endfunc' macro which contains the .endfunc and .size directives. It also adds a .func directive to the 'func' assembler macro. The .func/.endfunc have been used so the assembler can fail if endfunc is omitted. Fixes ARM-Software/tf-issues#295 Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc Signed-off-by: Kévin Petit <kevin.petit@arm.com>
-
- 06 Mar, 2015 1 commit
-
-
Sandrine Bailleux authored
This patch modifies the declarations of the functions printf() et al. and adds the right GCC attribute to request the compiler to check the type of the arguments passed to these functions against the given format string. This will ensure that the compiler outputs warning messages like the following whenever it detects an inconsistency: file.c:42: warning: format ‘%d’ expects type ‘int’, but argument 3 has type ‘long int’ It also fixes the type mismatch inconsistencies that it revealed across the code base. NOTE: THIS PATCH MAY FORCE PLATFORM PORTS OR SP/SPDS THAT USE THE PRINTF FAMILY OF FUNCTIONS TO FIX ANY TYPE MISMATCH INCONSISTENCIES. Change-Id: If36bb54ec7d6dd2cb4791d89b02a24ac13fd2df6
-
- 23 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch adds support to save the "power state" parameter before the affinity level specific handlers are called in a CPU_SUSPEND call. This avoids the need to pass the power_state as a parameter to the handlers and Secure Payload Dispatcher (SPD) suspend spd_pm_ops. The power_state arguments in the spd_pm_ops operations are now reserved and must not be used. The SPD can query the relevant power_state fields by using the psci_get_suspend_afflvl() & psci_get_suspend_stateid() APIs. NOTE: THIS PATCH WILL BREAK THE SPD_PM_OPS INTERFACE. HENCE THE SECURE PAYLOAD DISPATCHERS WILL NEED TO BE REWORKED TO USE THE NEW INTERFACE. Change-Id: I1293d7dc8cf29cfa6a086a009eee41bcbf2f238e
-
- 22 Jan, 2015 1 commit
-
-
Soby Mathew authored
This patch extends the build option `USE_COHERENT_MEMORY` to conditionally remove coherent memory from the memory maps of all boot loader stages. The patch also adds necessary documentation for coherent memory removal in firmware-design, porting and user guides. Fixes ARM-Software/tf-issues#106 Change-Id: I260e8768c6a5c2efc402f5804a80657d8ce38773
-
- 21 Aug, 2014 1 commit
-
-
Sandrine Bailleux authored
This patch implements the TSP on Juno. It executes from on-chip Trusted SRAM. Also, the other bootloader images (i.e. BL1 R/W, BL2 and BL3-1) have been moved around. The reason is, although there was enough space overall to store the TSP in SRAM, there was no contiguous free chunk of SRAM big enough to hold it. This patch keeps the overall memory layout (i.e. keeping BL1 R/W at the bottom, BL2 at the top and BL3-1 in between) but moves the base addresses of all the bootloader images in such a way that: - memory fragmentation is reduced enough to fit BL3-2 in; - new base addresses are suitable for release builds as well as debug ones; - each image has a few extra kilobytes for future growth. BL3-1 and BL3-2 are the images which received the biggest allocations since they will most probably grow the most. This patch also adds instruction synchronization barriers around the code which handles the timer interrupt in the TSP. This ensures that the interrupt is not acknowledged after or EOIed before it is deactivated at the peripheral. Change-Id: I1c5b51858700027ee283ac85d18e06863a27c72e
-
- 19 Aug, 2014 2 commits
-
-
Juan Castillo authored
This patch adds support for SYSTEM_OFF and SYSTEM_RESET PSCI operations. A platform should export handlers to complete the requested operation. The FVP port exports fvp_system_off() and fvp_system_reset() as an example. If the SPD provides a power management hook for system off and system reset, then the SPD is notified about the corresponding operation so it can do some bookkeeping. The TSPD exports tspd_system_off() and tspd_system_reset() for that purpose. Versatile Express shutdown and reset methods have been removed from the FDT as new PSCI sys_poweroff and sys_reset services have been added. For those kernels that do not support yet these PSCI services (i.e. GICv3 kernel), the original dtsi files have been renamed to *-no_psci.dtsi. Fixes ARM-software/tf-issues#218 Change-Id: Ic8a3bf801db979099ab7029162af041c4e8330c8
-
Dan Handley authored
* Move TSP platform porting functions to new file: include/bl32/tsp/platform_tsp.h. * Create new TSP_IRQ_SEC_PHY_TIMER definition for use by the generic TSP interrupt handling code, instead of depending on the FVP specific definition IRQ_SEC_PHY_TIMER. * Rename TSP platform porting functions from bl32_* to tsp_*, and definitions from BL32_* to TSP_*. * Update generic TSP code to use new platform porting function names and definitions. * Update FVP port accordingly and move all TSP source files to: plat/fvp/tsp/. * Update porting guide with above changes. Note: THIS CHANGE REQUIRES ALL PLATFORM PORTS OF THE TSP TO BE UPDATED Fixes ARM-software/tf-issues#167 Change-Id: Ic0ff8caf72aebb378d378193d2f017599fc6b78f
-
- 15 Aug, 2014 1 commit
-
-
Achin Gupta authored
This patch disables routing of external aborts from lower exception levels to EL3 and ensures that a SError interrupt generated as a result of execution in EL3 is taken locally instead of a lower exception level. The SError interrupt is enabled in the TSP code only when the operation has not been directly initiated by the normal world. This is to prevent the possibility of an asynchronous external abort which originated in normal world from being taken when execution is in S-EL1. Fixes ARM-software/tf-issues#153 Change-Id: I157b996c75996d12fd86d27e98bc73dd8bce6cd5
-