1. 04 May, 2018 6 commits
    • Jeenu Viswambharan's avatar
      RAS: Allow individual interrupt registration · ca6d9185
      Jeenu Viswambharan authored
      
      
      EHF currently allows for registering interrupt handlers for a defined
      priority ranges. This is primarily targeted at various EL3 dispatchers
      to own ranges of secure interrupt priorities in order to delegate
      execution to lower ELs.
      
      The RAS support added by earlier patches necessitates registering
      handlers based on interrupt number so that error handling agents shall
      receive and handle specific Error Recovery or Fault Handling interrupts
      at EL3.
      
      This patch introduces a macro, RAS_INTERRUPTS() to declare an array of
      interrupt numbers and handlers. Error handling agents can use this macro
      to register handlers for individual RAS interrupts. The array is
      expected to be sorted in the increasing order of interrupt numbers.
      
      As part of RAS initialisation, the list of all RAS interrupts are sorted
      based on their ID so that, given an interrupt, its handler can be looked
      up with a simple binary search.
      
      For an error handling agent that wants to handle a RAS interrupt,
      platform must:
      
        - Define PLAT_RAS_PRI to be the priority of all RAS exceptions.
      
        - Enumerate interrupts to have the GIC driver program individual EL3
          interrupts to the required priority range. This is required by EHF
          even before this patch.
      
      Documentation to follow.
      
      Change-Id: I9471e4887ff541f8a7a63309e9cd8f771f76aeda
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      ca6d9185
    • Jeenu Viswambharan's avatar
      RAS: Add support for node registration · 362599ec
      Jeenu Viswambharan authored
      
      
      Previous patches added frameworks for handling RAS errors. This patch
      introduces features that the platform can use to enumerate and iterate
      RAS nodes:
      
        - The REGISTER_RAS_NODES() can be used to expose an array of
          ras_node_info_t structures. Each ras_node_info_t describes a RAS
          node, along with handlers for probing the node for error, and if
          did record an error, another handler to handle it.
      
        - The macro for_each_ras_node() can be used to iterate over the
          registered RAS nodes, probe for, and handle any errors.
      
      The common platform EA handler has been amended using error handling
      primitives introduced by both this and previous patches.
      
      Change-Id: I2e13f65a88357bc48cd97d608db6c541fad73853
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      362599ec
    • Jeenu Viswambharan's avatar
      RAS: Add helpers to access Standard Error Records · 30d81c36
      Jeenu Viswambharan authored
      
      
      The ARMv8 RAS Extensions introduced Standard Error Records which are a
      set of standard registers through which:
      
        - Platform can configure RAS node policy; e.g., notification
          mechanism;
      
        - RAS nodes can record and expose error information for error handling
          agents.
      
      Standard Error Records can either be accessed via. memory-mapped
      or System registers. This patch adds helper functions to access
      registers and fields within an error record.
      
      Change-Id: I6594ba799f4a1789d7b1e45b3e17fd40e7e0ba5c
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      30d81c36
    • Jeenu Viswambharan's avatar
      AArch64: Introduce RAS handling · 14c6016a
      Jeenu Viswambharan authored
      
      
      RAS extensions are mandatory for ARMv8.2 CPUs, but are also optional
      extensions to base ARMv8.0 architecture.
      
      This patch adds build system support to enable RAS features in ARM
      Trusted Firmware. A boolean build option RAS_EXTENSION is introduced for
      this.
      
      With RAS_EXTENSION, an Exception Synchronization Barrier (ESB) is
      inserted at all EL3 vector entry and exit. ESBs will synchronize pending
      external aborts before entering EL3, and therefore will contain and
      attribute errors to lower EL execution. Any errors thus synchronized are
      detected via. DISR_EL1 register.
      
      When RAS_EXTENSION is set to 1, HANDLE_EL3_EA_FIRST must also be set to 1.
      
      Change-Id: I38a19d84014d4d8af688bd81d61ba582c039383a
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      14c6016a
    • Jeenu Viswambharan's avatar
      AArch64: Introduce External Abort handling · 76454abf
      Jeenu Viswambharan authored
      
      
      At present, any External Abort routed to EL3 is reported as an unhandled
      exception and cause a panic. This patch enables ARM Trusted Firmware to
      handle External Aborts routed to EL3.
      
      With this patch, when an External Abort is received at EL3, its handling
      is delegated to plat_ea_handler() function. Platforms can provide their
      own implementation of this function. This patch adds a weak definition
      of the said function that prints out a message and just panics.
      
      In order to support handling External Aborts at EL3, the build option
      HANDLE_EA_EL3_FIRST must be set to 1.
      
      Before this patch, HANDLE_EA_EL3_FIRST wasn't passed down to
      compilation; this patch fixes that too.
      
      Change-Id: I4d07b7e65eb191ff72d63b909ae9512478cd01a1
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      76454abf
    • Jeenu Viswambharan's avatar
      AArch64: Refactor GP register restore to separate function · ef653d93
      Jeenu Viswambharan authored
      
      
      At present, the function that restores general purpose registers also
      does ERET. Refactor the restore code to restore general purpose
      registers without ERET to complement the save function.
      
      The macro save_x18_to_x29_sp_el0 was used only once, and is therefore
      removed, and its contents expanded inline for readability.
      
      No functional changes, but with this patch:
      
        - The SMC return path will incur an branch-return and an additional
          register load.
      
        - The unknown SMC path restores registers x0 to x3.
      
      Change-Id: I7a1a63e17f34f9cde810685d70a0ad13ca3b7c50
      Signed-off-by: default avatarJeenu Viswambharan <jeenu.viswambharan@arm.com>
      ef653d93
  2. 03 May, 2018 1 commit
  3. 02 May, 2018 1 commit
  4. 01 May, 2018 5 commits
  5. 27 Apr, 2018 3 commits
    • Masahiro Yamada's avatar
      types: use int-ll64 for both aarch32 and aarch64 · 0a2d5b43
      Masahiro Yamada authored
      Since commit 031dbb12
      
       ("AArch32: Add essential Arch helpers"),
      it is difficult to use consistent format strings for printf() family
      between aarch32 and aarch64.
      
      For example, uint64_t is defined as 'unsigned long long' for aarch32
      and as 'unsigned long' for aarch64.  Likewise, uintptr_t is defined
      as 'unsigned int' for aarch32, and as 'unsigned long' for aarch64.
      
      A problem typically arises when you use printf() in common code.
      
      One solution could be, to cast the arguments to a type long enough
      for both architectures.  For example, if 'val' is uint64_t type,
      like this:
      
        printf("val = %llx\n", (unsigned long long)val);
      
      Or, somebody may suggest to use a macro provided by <inttypes.h>,
      like this:
      
        printf("val = %" PRIx64 "\n", val);
      
      But, both would make the code ugly.
      
      The solution adopted in Linux kernel is to use the same typedefs for
      all architectures.  The fixed integer types in the kernel-space have
      been unified into int-ll64, like follows:
      
          typedef signed char           int8_t;
          typedef unsigned char         uint8_t;
      
          typedef signed short          int16_t;
          typedef unsigned short        uint16_t;
      
          typedef signed int            int32_t;
          typedef unsigned int          uint32_t;
      
          typedef signed long long      int64_t;
          typedef unsigned long long    uint64_t;
      
      [ Linux commit: 0c79a8e29b5fcbcbfd611daf9d500cfad8370fcf ]
      
      This gets along with the codebase shared between 32 bit and 64 bit,
      with the data model called ILP32, LP64, respectively.
      
      The width for primitive types is defined as follows:
      
                         ILP32           LP64
          int            32              32
          long           32              64
          long long      64              64
          pointer        32              64
      
      'long long' is 64 bit for both, so it is used for defining uint64_t.
      'long' has the same width as pointer, so for uintptr_t.
      
      We still need an ifdef conditional for (s)size_t.
      
      All 64 bit architectures use "unsigned long" size_t, and most 32 bit
      architectures use "unsigned int" size_t.  H8/300, S/390 are known as
      exceptions; they use "unsigned long" size_t despite their architecture
      is 32 bit.
      
      One idea for simplification might be to define size_t as 'unsigned long'
      across architectures, then forbid the use of "%z" string format.
      However, this would cause a distortion between size_t and sizeof()
      operator.  We have unknowledge about the native type of sizeof(), so
      we need a guess of it anyway.  I want the following formula to always
      return 1:
      
        __builtin_types_compatible_p(size_t, typeof(sizeof(int)))
      
      Fortunately, ARM is probably a majority case.  As far as I know, all
      32 bit ARM compilers use "unsigned int" size_t.
      Signed-off-by: default avatarMasahiro Yamada <yamada.masahiro@socionext.com>
      0a2d5b43
    • Masahiro Yamada's avatar
      arch_helpers: use u_register_t for register read/write · 8f4dbaab
      Masahiro Yamada authored
      
      
      u_register_t is preferred rather than uint64_t.  This is more
      consistent with the aarch32 implementation.
      Signed-off-by: default avatarMasahiro Yamada <yamada.masahiro@socionext.com>
      8f4dbaab
    • Masahiro Yamada's avatar
      Fix pointer type mismatch of handlers · 57d1e5fa
      Masahiro Yamada authored
      Commit 4c0d0390
      
       ("Rework type usage in Trusted Firmware") changed
      the type usage in struct declarations, but did not touch the definition
      side.  Fix the type mismatch.
      Signed-off-by: default avatarMasahiro Yamada <yamada.masahiro@socionext.com>
      57d1e5fa
  6. 26 Apr, 2018 2 commits
    • Dimitris Papastamos's avatar
      Merge pull request #1345 from dbasehore/udelay · a8d9550b
      Dimitris Papastamos authored
      rockchip/rk3399: Fix sram_udelay
      a8d9550b
    • Antonio Nino Diaz's avatar
      xlat: Set AP[1] to 1 when it is RES1 · 01c0a38e
      Antonio Nino Diaz authored
      
      
      According to the ARMv8 ARM issue C.a:
      
          AP[1] is valid only for stage 1 of a translation regime that can
          support two VA ranges. It is RES 1 when stage 1 translations can
          support only one VA range.
      
      This means that, even though this bit is ignored, it should be set to 1
      in the EL3 and EL2 translation regimes.
      
      For translation regimes consisting on EL0 and a higher regime this bit
      selects between control at EL0 or at the higher Exception level. The
      regimes that support two VA ranges are EL1&0 and EL2&0 (the later one
      is only available since ARMv8.1).
      
      This fix has to be applied to both versions of the translation tables
      library.
      
      Change-Id: If19aaf588551bac7aeb6e9a686cf0c2068e7c181
      Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      01c0a38e
  7. 24 Apr, 2018 2 commits
  8. 23 Apr, 2018 1 commit
    • Antonio Nino Diaz's avatar
      Add support for the SMC Calling Convention 2.0 · 2f370465
      Antonio Nino Diaz authored
      
      
      Due to differences in the bitfields of the SMC IDs, it is not possible
      to support SMCCC 1.X and 2.0 at the same time.
      
      The behaviour of `SMCCC_MAJOR_VERSION` has changed. Now, it is a build
      option that specifies the major version of the SMCCC that the Trusted
      Firmware supports. The only two allowed values are 1 and 2, and it
      defaults to 1. The value of `SMCCC_MINOR_VERSION` is derived from it.
      
      Note: Support for SMCCC v2.0 is an experimental feature to enable
      prototyping of secure partition specifications. Support for this
      convention is disabled by default and could be removed without notice.
      
      Change-Id: I88abf9ccf08e9c66a13ce55c890edea54d9f16a7
      Signed-off-by: default avatarAntonio Nino Diaz <antonio.ninodiaz@arm.com>
      2f370465
  9. 21 Apr, 2018 1 commit
  10. 18 Apr, 2018 3 commits
  11. 17 Apr, 2018 2 commits
  12. 16 Apr, 2018 3 commits
  13. 13 Apr, 2018 10 commits