fel.c 46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/* Needs _BSD_SOURCE for htole and letoh  */
19
20
/* glibc 2.20+ also requires _DEFAULT_SOURCE */
#define _DEFAULT_SOURCE
21
#define _BSD_SOURCE
22
#define _NETBSD_SOURCE
23
24
25

#include <libusb.h>
#include <stdint.h>
26
#include <stdbool.h>
27
28
29
30
31
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
32
#include <stdarg.h>
33
#include <errno.h>
34
#include <unistd.h>
35
#include <sys/stat.h>
36

37
#include "endian_compat.h"
38
#include "progress.h"
Eric Molitor's avatar
Eric Molitor committed
39

40
41
42
43
44
45
46
47
48
struct  aw_usb_request {
	char signature[8];
	uint32_t length;
	uint32_t unknown1;	/* 0x0c000000 */
	uint16_t request;
	uint32_t length2;	/* Same as length */
	char	pad[10];
}  __attribute__((packed));

49
50
51
52
53
54
55
56
57
58
59
struct aw_fel_version {
	char signature[8];
	uint32_t soc_id;	/* 0x00162300 */
	uint32_t unknown_0a;	/* 1 */
	uint16_t protocol;	/* 1 */
	uint8_t  unknown_12;	/* 0x44 */
	uint8_t  unknown_13;	/* 0x08 */
	uint32_t scratchpad;	/* 0x7e00 */
	uint32_t pad[2];	/* unused */
} __attribute__((packed));

60
61
62
static const int AW_USB_READ = 0x11;
static const int AW_USB_WRITE = 0x12;

63
64
static int AW_USB_FEL_BULK_EP_OUT;
static int AW_USB_FEL_BULK_EP_IN;
65
static int timeout = 60000;
66
static bool verbose = false; /* If set, makes the 'fel' tool more talkative */
67
68
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
69
70
71
72
73
74
75
76
77
78

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
79

80
81
static const int AW_USB_MAX_BULK_SEND = 4 * 1024 * 1024; // 4 MiB per bulk request

82
83
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
		   size_t length, bool progress)
84
{
85
86
87
88
89
90
	/*
	 * With no progress notifications, we'll use the maximum chunk size.
	 * Otherwise, it's useful to lower the size (have more chunks) to get
	 * more frequent status updates. 128 KiB per request seem suitable.
	 */
	size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
91
92

	size_t chunk;
93
94
	int rc, sent;
	while (length > 0) {
95
96
		chunk = length < max_chunk ? length : max_chunk;
		rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk, &sent, timeout);
97
		if (rc != 0) {
98
			fprintf(stderr, "libusb usb_bulk_send error %d\n", rc);
99
100
101
102
			exit(2);
		}
		length -= sent;
		data += sent;
103
104
105

		if (progress)
			progress_update(sent); // notification after each chunk
106
107
108
109
110
111
112
	}
}

void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
	int rc, recv;
	while (length > 0) {
113
		rc = libusb_bulk_transfer(usb, ep, data, length, &recv, timeout);
114
		if (rc != 0) {
115
			fprintf(stderr, "usb_bulk_recv error %d\n", rc);
116
117
118
119
120
121
122
			exit(2);
		}
		length -= recv;
		data += recv;
	}
}

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_INVALID		0	/* Invalid Image	*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_TYPE_SCRIPT		6	/* Script file		*/
#define IH_NMLEN		32	/* Image Name Length	*/

/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH	-1

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * Utility function to determine the image type from a mkimage-compatible
 * header at given buffer (address).
 *
 * For invalid headers (insufficient size or 'magic' mismatch) the function
 * will return IH_TYPE_INVALID. Negative return values might indicate
 * special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
 * image doesn't match the expected (ARM) architecture.
 * Otherwise the function will return the "ih_type" field for valid headers.
 */
int get_image_type(const uint8_t *buf, size_t len)
{
	uint32_t *buf32 = (uint32_t *)buf;

	if (len <= HEADER_SIZE) /* insufficient length/size */
		return IH_TYPE_INVALID;
	if (be32toh(buf32[0]) != IH_MAGIC) /* signature mismatch */
		return IH_TYPE_INVALID;
	/* For sunxi, we always expect ARM architecture here */
	if (buf[29] != IH_ARCH_ARM)
		return IH_TYPE_ARCH_MISMATCH;

	/* assume a valid header, and return ih_type */
	return buf[30];
}

163
164
165
166
167
168
169
170
void aw_send_usb_request(libusb_device_handle *usb, int type, int length)
{
	struct aw_usb_request req;
	memset(&req, 0, sizeof(req));
	strcpy(req.signature, "AWUC");
	req.length = req.length2 = htole32(length);
	req.request = htole16(type);
	req.unknown1 = htole32(0x0c000000);
171
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, &req, sizeof(req), false);
172
173
174
175
176
177
178
179
180
}

void aw_read_usb_response(libusb_device_handle *usb)
{
	char buf[13];
	usb_bulk_recv(usb, AW_USB_FEL_BULK_EP_IN, &buf, sizeof(buf));
	assert(strcmp(buf, "AWUS") == 0);
}

181
182
void aw_usb_write(libusb_device_handle *usb, const void *data, size_t len,
		  bool progress)
183
184
{
	aw_send_usb_request(usb, AW_USB_WRITE, len);
185
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, data, len, progress);
186
187
188
189
190
191
	aw_read_usb_response(usb);
}

void aw_usb_read(libusb_device_handle *usb, const void *data, size_t len)
{
	aw_send_usb_request(usb, AW_USB_READ, len);
192
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_IN, data, len, false);
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
	aw_read_usb_response(usb);
}

struct aw_fel_request {
	uint32_t request;
	uint32_t address;
	uint32_t length;
	uint32_t pad;
};

static const int AW_FEL_VERSION = 0x001;
static const int AW_FEL_1_WRITE = 0x101;
static const int AW_FEL_1_EXEC  = 0x102;
static const int AW_FEL_1_READ  = 0x103;

void aw_send_fel_request(libusb_device_handle *usb, int type, uint32_t addr, uint32_t length)
{
	struct aw_fel_request req;
	memset(&req, 0, sizeof(req));
	req.request = htole32(type);
	req.address = htole32(addr);
	req.length = htole32(length);
215
	aw_usb_write(usb, &req, sizeof(req), false);
216
217
218
219
220
221
222
223
}

void aw_read_fel_status(libusb_device_handle *usb)
{
	char buf[8];
	aw_usb_read(usb, &buf, sizeof(buf));
}

224
void aw_fel_get_version(libusb_device_handle *usb, struct aw_fel_version *buf)
225
226
{
	aw_send_fel_request(usb, AW_FEL_VERSION, 0, 0);
227
	aw_usb_read(usb, buf, sizeof(*buf));
228
229
	aw_read_fel_status(usb);

230
231
232
233
234
235
236
237
238
239
240
241
	buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
	buf->unknown_0a = le32toh(buf->unknown_0a);
	buf->protocol = le32toh(buf->protocol);
	buf->scratchpad = le16toh(buf->scratchpad);
	buf->pad[0] = le32toh(buf->pad[0]);
	buf->pad[1] = le32toh(buf->pad[1]);
}

void aw_fel_print_version(libusb_device_handle *usb)
{
	struct aw_fel_version buf;
	aw_fel_get_version(usb, &buf);
242

Henrik Nordstrom's avatar
Henrik Nordstrom committed
243
	const char *soc_name="unknown";
244
	switch (buf.soc_id) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
245
246
247
	case 0x1623: soc_name="A10";break;
	case 0x1625: soc_name="A13";break;
	case 0x1633: soc_name="A31";break;
248
	case 0x1651: soc_name="A20";break;
Chen-Yu Tsai's avatar
Chen-Yu Tsai committed
249
	case 0x1650: soc_name="A23";break;
Chen-Yu Tsai's avatar
Chen-Yu Tsai committed
250
	case 0x1639: soc_name="A80";break;
251
	case 0x1667: soc_name="A33";break;
252
	case 0x1673: soc_name="A83T";break;
253
	case 0x1680: soc_name="H3";break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
254
255
	}

256
257
258
259
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
260
261
262
263
264
265
266
267
268
269
270
271
}

void aw_fel_read(libusb_device_handle *usb, uint32_t offset, void *buf, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_READ, offset, len);
	aw_usb_read(usb, buf, len);
	aw_read_fel_status(usb);
}

void aw_fel_write(libusb_device_handle *usb, void *buf, uint32_t offset, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
272
	aw_usb_write(usb, buf, len, false);
273
274
275
276
277
278
279
280
281
	aw_read_fel_status(usb);
}

void aw_fel_execute(libusb_device_handle *usb, uint32_t offset)
{
	aw_send_fel_request(usb, AW_FEL_1_EXEC, offset, 0);
	aw_read_fel_status(usb);
}

282
283
284
285
286
287
288
289
/*
 * This function is a higher-level wrapper for the FEL write functionality.
 * Unlike aw_fel_write() above - which is reserved for internal use - this
 * routine is meant to be called from "user" code, and supports (= allows)
 * progress callbacks.
 * The return value represents elapsed time in seconds (needed for execution).
 */
double aw_write_buffer(libusb_device_handle *usb, void *buf, uint32_t offset,
290
		       size_t len, bool progress)
291
292
293
294
295
296
297
298
299
300
301
302
303
{
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size
			   && offset + len >= uboot_entry)
	{
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
			offset, offset + len,
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
	double start = gettime();
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
304
	aw_usb_write(usb, buf, len, progress);
305
306
307
308
	aw_read_fel_status(usb);
	return gettime() - start;
}

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
		printf("%08lx: ",(long int)offset + j);
		for (i = 0; i < 16; i++) {
			if ((j+i) < size) {
				printf("%02x ", buf[j+i]);
			} else {
				printf("__ ");
			}
		}
		printf(" ");
		for (i = 0; i < 16; i++) {
			if (j+i >= size) {
				printf(".");
			} else if (isprint(buf[j+i])) {
				printf("%c", buf[j+i]);
			} else {
				printf(".");
			}
		}
		printf("\n");
	}
}
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
unsigned int file_size(const char *filename)
{
	struct stat st;
	if (stat(filename, &st) != 0) {
		fprintf(stderr, "stat() error on file \"%s\": %s\n", filename,
			strerror(errno));
		exit(1);
	}
	if (!S_ISREG(st.st_mode)) {
		fprintf(stderr, "error: \"%s\" is not a regular file\n", filename);
		exit(1);
	}
	return st.st_size;
}

352
353
354
355
int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
356
357
358
359
	if (!out) {
		perror("Failed to open output file: ");
		exit(1);
	}
360
361
362
363
364
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

365
366
367
368
369
370
371
372
373
374
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
375
376
377
378
	if (!in) {
		perror("Failed to open input file: ");
		exit(1);
	}
379
380
	
	while(1) {
381
382
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
383
		offset += n;
384
		if (n < len)
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

void aw_fel_hexdump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	hexdump(buf, offset, size);
}

void aw_fel_dump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	fwrite(buf, size, 1, stdout);
}
Henrik Nordstrom's avatar
Henrik Nordstrom committed
409
void aw_fel_fill(libusb_device_handle *usb, uint32_t offset, size_t size, unsigned char value)
410
411
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
412
	memset(buf, value, size);
413
	aw_write_buffer(usb, buf, offset, size, false);
414
415
}

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
 * The 'sram_swap_buffers' structure is used to describe information about
 * two buffers in SRAM, the content of which needs to be exchanged before
 * calling the U-Boot SPL code and then exchanged again before returning
 * control back to the FEL code from the BROM.
 */

typedef struct {
	uint32_t buf1; /* BROM buffer */
	uint32_t buf2; /* backup storage location */
	uint32_t size; /* buffer size */
} sram_swap_buffers;

/*
 * Each SoC variant may have its own list of memory buffers to be exchanged
 * and the information about the placement of the thunk code, which handles
 * the transition of execution from the BROM FEL code to the U-Boot SPL and
 * back.
 *
 * Note: the entries in the 'swap_buffers' tables need to be sorted by 'buf1'
 * addresses. And the 'buf1' addresses are the BROM data buffers, while 'buf2'
 * addresses are the intended backup locations.
438
439
440
441
442
443
444
445
446
447
448
449
 *
 * Also for performance reasons, we optionally want to have MMU enabled with
 * optimal section attributes configured (the code from the BROM should use
 * I-cache, writing data to the DRAM area should use write combining). The
 * reason is that the BROM FEL protocol implementation moves data using the
 * CPU somewhere on the performance critical path when transferring data over
 * USB. The older SoC variants (A10/A13/A20/A31/A23) already have MMU enabled
 * and we only need to adjust section attributes. The BROM in newer SoC variants
 * (A33/A83T/H3) doesn't enable MMU anymore, so we need to find some 16K of
 * spare space in SRAM to place the translation table there and specify it as
 * the 'mmu_tt_addr' field in the 'soc_sram_info' structure. The 'mmu_tt_addr'
 * address must be 16K aligned.
450
451
 */
typedef struct {
452
	uint32_t           soc_id;       /* ID of the SoC */
453
	uint32_t           spl_addr;     /* SPL load address */
454
455
456
457
	uint32_t           scratch_addr; /* A safe place to upload & run code */
	uint32_t           thunk_addr;   /* Address of the thunk code */
	uint32_t           thunk_size;   /* Maximal size of the thunk code */
	uint32_t           needs_l2en;   /* Set the L2EN bit */
458
	uint32_t           mmu_tt_addr;  /* MMU translation table address */
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
	sram_swap_buffers *swap_buffers;
} soc_sram_info;

/*
 * The FEL code from BROM in A10/A13/A20 sets up two stacks for itself. One
 * at 0x2000 (and growing down) for the IRQ handler. And another one at 0x7000
 * (and also growing down) for the regular code. In order to use the whole
 * 32 KiB in the A1/A2 sections of SRAM, we need to temporarily move these
 * stacks elsewhere. And the addresses above 0x7000 are also a bit suspicious,
 * so it might be safer to backup the 0x7000-0x8000 area too. On A10/A13/A20
 * we can use the SRAM section A3 (0x8000) for this purpose.
 */
sram_swap_buffers a10_a13_a20_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x8000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x8800, .size = 0x8000 - 0x5C00 },
	{ 0 }  /* End of the table */
};

/*
 * A31 is very similar to A10/A13/A20, except that it has no SRAM at 0x8000.
 * So we use the SRAM section at 0x44000 instead. This is the memory, which
 * is normally shared with the OpenRISC core (should we do an extra check to
 * ensure that this core is powered off and can't interfere?).
 */
sram_swap_buffers a31_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x44000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x44800, .size = 0x8000 - 0x5C00 },
	{ 0 }  /* End of the table */
};

soc_sram_info soc_sram_info_table[] = {
	{
		.soc_id       = 0x1623, /* Allwinner A10 */
492
		.scratch_addr = 0x2000,
493
494
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
495
		.needs_l2en   = 1,
496
497
498
	},
	{
		.soc_id       = 0x1625, /* Allwinner A13 */
499
		.scratch_addr = 0x2000,
500
501
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
502
		.needs_l2en   = 1,
503
504
505
	},
	{
		.soc_id       = 0x1651, /* Allwinner A20 */
506
		.scratch_addr = 0x2000,
507
508
509
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
	},
Hans de Goede's avatar
Hans de Goede committed
510
511
	{
		.soc_id       = 0x1650, /* Allwinner A23 */
512
		.scratch_addr = 0x2000,
Hans de Goede's avatar
Hans de Goede committed
513
514
515
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
516
517
	{
		.soc_id       = 0x1633, /* Allwinner A31 */
518
		.scratch_addr = 0x2000,
519
520
521
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
522
523
	{
		.soc_id       = 0x1667, /* Allwinner A33 */
524
		.scratch_addr = 0x2000,
525
526
527
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
528
529
	{
		.soc_id       = 0x1673, /* Allwinner A83T */
530
		.scratch_addr = 0x2000,
531
532
533
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
534
535
	{
		.soc_id       = 0x1680, /* Allwinner H3 */
536
		.scratch_addr = 0x2000,
537
		.mmu_tt_addr  = 0x44000,
538
539
540
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
	{ 0 } /* End of the table */
};

/*
 * This generic record assumes BROM with similar properties to A10/A13/A20/A31,
 * but no extra SRAM sections beyond 0x8000. It also assumes that the IRQ
 * handler stack usage never exceeds 0x400 bytes.
 *
 * The users may or may not hope that the 0x7000-0x8000 area is also unused
 * by the BROM and re-purpose it for the SPL stack.
 *
 * The size limit for the ".text + .data" sections is ~21 KiB.
 */
sram_swap_buffers generic_sram_swap_buffers[] = {
	{ .buf1 = 0x01C00, .buf2 = 0x5800, .size = 0x400 },
	{ 0 }  /* End of the table */
};

soc_sram_info generic_sram_info = {
560
	.scratch_addr = 0x2000,
561
562
563
564
565
566
	.thunk_addr   = 0x5680, .thunk_size = 0x180,
	.swap_buffers = generic_sram_swap_buffers,
};

soc_sram_info *aw_fel_get_sram_info(libusb_device_handle *usb)
{
567
568
569
570
571
572
573
574
575
576
577
578
579
	/* persistent sram_info, retrieves result pointer once and caches it */
	static soc_sram_info *result = NULL;
	if (result == NULL) {
		int i;

		struct aw_fel_version buf;
		aw_fel_get_version(usb, &buf);

		for (i = 0; soc_sram_info_table[i].swap_buffers; i++)
			if (soc_sram_info_table[i].soc_id == buf.soc_id) {
				result = &soc_sram_info_table[i];
				break;
			}
580

581
582
583
584
585
586
587
		if (!result) {
			printf("Warning: no 'soc_sram_info' data for your SoC (id=%04X)\n",
			       buf.soc_id);
			result = &generic_sram_info;
		}
	}
	return result;
588
589
590
591
592
593
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

594
595
596
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
uint32_t aw_read_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			    uint32_t coproc, uint32_t opc1, uint32_t crn,
			    uint32_t crm, uint32_t opc2)
{
	uint32_t val = 0;
	uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)    |
			  ((crn & 15) << 16)    |
			  ((coproc & 15) << 8)  |
			  ((opc2 & 7) << 5)     |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(opcode),     /* mrc  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xe58f0000), /* str  r0, [pc]                         */
		htole32(0xe12fff1e), /* bx   lr                               */
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 12, &val, sizeof(val));
	return le32toh(val);
}

void aw_write_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			 uint32_t coproc, uint32_t opc1, uint32_t crn,
			 uint32_t crm, uint32_t opc2, uint32_t val)
{
	uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)                |
			  ((crn & 15) << 16)                |
			  ((coproc & 15) << 8)              |
			  ((opc2 & 7) << 5)                 |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(0xe59f000c), /* ldr  r0, [pc, #12]                    */
		htole32(opcode),     /* mcr  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xf57ff04f), /* dsb  sy                               */
		htole32(0xf57ff06f), /* isb  sy                               */
		htole32(0xe12fff1e), /* bx   lr                               */
		htole32(val)
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
}

641
void aw_enable_l2_cache(libusb_device_handle *usb, soc_sram_info *sram_info)
642
643
644
645
646
647
648
649
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

650
651
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
652
653
}

654
655
void aw_get_stackinfo(libusb_device_handle *usb, soc_sram_info *sram_info,
                      uint32_t *sp_irq, uint32_t *sp)
656
657
658
659
660
661
662
663
664
665
666
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

667
668
669
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x10, results, 8);
670
671
672
673
674
675
676
677
678
679
680
681
682
683
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

684
685
686
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x24, results, 8);
687
688
689
690
691
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

692
uint32_t aw_get_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info)
693
{
694
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0);
695
696
}

697
698
699
700
701
702
703
704
705
706
uint32_t aw_get_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2);
}

uint32_t aw_get_dacr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0);
}

707
uint32_t aw_get_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info)
708
{
709
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0);
710
711
}

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
void aw_set_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbr0)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0, ttbr0);
}

void aw_set_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbcr)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2, ttbcr);
}

void aw_set_dacr(libusb_device_handle *usb, soc_sram_info *sram_info,
		 uint32_t dacr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0, dacr);
}

void aw_set_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t sctlr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0, sctlr);
}

/*
 * Reconstruct the same MMU translation table as used by the A20 BROM.
 * We are basically reverting the changes, introduced in newer SoC
 * variants. This works fine for the SoC variants with the memory
 * layout similar to A20 (the SRAM is in the first megabyte of the
 * address space and the BROM is in the last megabyte of the address
 * space).
 */
uint32_t *aw_generate_mmu_translation_table(void)
{
	uint32_t *tt = malloc(4096 * sizeof(uint32_t));
	uint32_t i;

	/*
	 * Direct mapping using 1MB sections with TEXCB=00000 (Strongly
	 * ordered) for all memory except the first and the last sections,
	 * which have TEXCB=00100 (Normal). Domain bits are set to 1111
	 * and AP bits are set to 11, but this is mostly irrelevant.
	 */
	for (i = 0; i < 4096; i++)
		tt[i] = 0x00000DE2 | (i << 20);
	tt[0x000] |= 0x1000;
	tt[0xFFF] |= 0x1000;

	return tt;
}

763
764
uint32_t *aw_backup_and_disable_mmu(libusb_device_handle *usb,
                                    soc_sram_info *sram_info)
765
{
766
	uint32_t *tt = NULL;
767
768
	uint32_t ttbr0 = aw_get_ttbr0(usb, sram_info);
	uint32_t sctlr = aw_get_sctlr(usb, sram_info);
769
770
	uint32_t ttbcr = aw_get_ttbcr(usb, sram_info);
	uint32_t dacr  = aw_get_dacr(usb, sram_info);
771
772
773
	uint32_t i;

	uint32_t arm_code[] = {
774
		/* Disable I-cache, MMU and branch prediction */
775
776
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
777
778
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
779
780
781
782
783
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
	/*
	 * Below are some checks for the register values, which are known
	 * to be initialized in this particular way by the existing BROM
	 * implementations. We don't strictly need them to exactly match,
	 * but still have these safety guards in place in order to detect
	 * and review any potential configuration changes in future SoC
	 * variants (if one of these checks fails, then it is not a serious
	 * problem but more likely just an indication that one of these
	 * checks needs to be relaxed).
	 */

	/* Basically, ignore M/Z/I bits and expect no TEX remap */
	if ((sctlr & ~((1 << 12) | (1 << 11) | 1)) != 0x00C52078) {
		fprintf(stderr, "Unexpected SCTLR (%08X)\n", sctlr);
		exit(1);
	}

801
	if (!(sctlr & 1)) {
802
803
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
804
805
	}

806
807
808
809
810
811
812
	if (dacr != 0x55555555) {
		fprintf(stderr, "Unexpected DACR (%08X)\n", dacr);
		exit(1);
	}

	if (ttbcr != 0x00000000) {
		fprintf(stderr, "Unexpected TTBCR (%08X)\n", ttbcr);
813
814
815
816
817
818
819
820
		exit(1);
	}

	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

821
	tt = malloc(16 * 1024);
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
	aw_fel_read(usb, ttbr0, tt, 16 * 1024);
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

839
	pr_info("Disabling I-cache, MMU and branch prediction...");
840
841
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
842
843
844
845
846
	pr_info(" done.\n");

	return tt;
}

847
848
849
void aw_restore_and_enable_mmu(libusb_device_handle *usb,
                               soc_sram_info *sram_info,
                               uint32_t *tt)
850
851
{
	uint32_t i;
852
	uint32_t ttbr0 = aw_get_ttbr0(usb, sram_info);
853
854

	uint32_t arm_code[] = {
855
856
857
858
859
860
861
862
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
863
864
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
865
866
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
867
868
869
870
871
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

888
889
890
891
892
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
	aw_fel_write(usb, tt, ttbr0, 16 * 1024);

893
	pr_info("Enabling I-cache, MMU and branch prediction...");
894
895
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
896
897
898
899
900
	pr_info(" done.\n");

	free(tt);
}

901
902
903
904
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
905
#define SPL_LEN_LIMIT 0x8000
906

907
908
909
910
911
912
913
914
void aw_fel_write_and_execute_spl(libusb_device_handle *usb,
				  uint8_t *buf, size_t len)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
915
	uint32_t sp, sp_irq;
916
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
917
	uint32_t *buf32 = (uint32_t *)buf;
918
	uint32_t cur_addr = sram_info->spl_addr;
919
	uint32_t *tt = NULL;
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

	if (!sram_info || !sram_info->swap_buffers) {
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

948
949
	if (sram_info->needs_l2en) {
		pr_info("Enabling the L2 cache\n");
950
		aw_enable_l2_cache(usb, sram_info);
951
952
	}

953
	aw_get_stackinfo(usb, sram_info, &sp_irq, &sp);
954
955
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

956
	tt = aw_backup_and_disable_mmu(usb, sram_info);
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
	if (!tt && sram_info->mmu_tt_addr) {
		if (sram_info->mmu_tt_addr & 0x3FFF) {
			fprintf(stderr, "SPL: 'mmu_tt_addr' must be 16K aligned\n");
			exit(1);
		}
		pr_info("Generating the new MMU translation table at 0x%08X\n",
		        sram_info->mmu_tt_addr);
		/*
		 * These settings are used by the BROM in A10/A13/A20 and
		 * we replicate them here when enabling the MMU. The DACR
		 * value 0x55555555 means that accesses are checked against
		 * the permission bits in the translation tables for all
		 * domains. The TTBCR value 0x00000000 means that the short
		 * descriptor translation table format is used, TTBR0 is used
		 * for all the possible virtual addresses (N=0) and that the
		 * translation table must be aligned at a 16K boundary.
		 */
		aw_set_dacr(usb, sram_info, 0x55555555);
		aw_set_ttbcr(usb, sram_info, 0x00000000);
		aw_set_ttbr0(usb, sram_info, sram_info->mmu_tt_addr);
		tt = aw_generate_mmu_translation_table();
	}
979

980
981
	swap_buffers = sram_info->swap_buffers;
	for (i = 0; swap_buffers[i].size; i++) {
982
983
984
985
986
		if ((swap_buffers[i].buf2 >= sram_info->spl_addr) &&
		    (swap_buffers[i].buf2 < sram_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - sram_info->spl_addr;
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
987
988
			if (tmp > len)
				tmp = len;
989
990
			aw_fel_write(usb, buf, cur_addr, tmp);
			cur_addr += tmp;
991
992
993
			buf += tmp;
			len -= tmp;
		}
994
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
995
996
997
998
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
			aw_fel_write(usb, buf, swap_buffers[i].buf2, tmp);
999
			cur_addr += tmp;
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
	if (sram_info->thunk_addr < spl_len_limit)
		spl_len_limit = sram_info->thunk_addr;

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
1017
		aw_fel_write(usb, buf, cur_addr, len);
1018

1019
1020
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(sram_info->spl_addr) +
		     (i + 1) * sizeof(*swap_buffers);
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

	if (thunk_size > sram_info->thunk_size) {
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
			(int)sizeof(fel_to_spl_thunk), sram_info->thunk_size);
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
1031
1032
	       &sram_info->spl_addr, sizeof(sram_info->spl_addr));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
1033
1034
1035
1036
1037
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

1038
	pr_info("=> Executing the SPL...");
1039
1040
	aw_fel_write(usb, thunk_buf, sram_info->thunk_addr, thunk_size);
	aw_fel_execute(usb, sram_info->thunk_addr);
1041
	pr_info(" done.\n");
1042
1043
1044
1045
1046
1047
1048

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
1049
	aw_fel_read(usb, sram_info->spl_addr + 4, header_signature, 8);
1050
1051
1052
1053
1054
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
1055

1056
1057
	/* re-enable the MMU if it was enabled by BROM */
	if(tt != NULL)
1058
		aw_restore_and_enable_mmu(usb, sram_info, tt);
1059
1060
}

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
void aw_fel_write_uboot_image(libusb_device_handle *usb,
		uint8_t *buf, size_t len)
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	uint32_t *buf32 = (uint32_t *)buf;

1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
	/* Check for a valid mkimage header */
	int image_type = get_image_type(buf, len);
	if (image_type <= IH_TYPE_INVALID) {
		switch (image_type) {
		case IH_TYPE_INVALID:
			fprintf(stderr, "Invalid U-Boot image: bad size or signature\n");
			break;
		case IH_TYPE_ARCH_MISMATCH:
			fprintf(stderr, "Invalid U-Boot image: wrong architecture\n");
			break;
		default:
			fprintf(stderr, "Invalid U-Boot image: error code %d\n",
				image_type);
		}
1089
1090
		exit(1);
	}
1091
1092
1093
	if (image_type != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image type mismatch: "
			"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
1094
1095
1096
1097
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
1098
	if (data_size != len - HEADER_SIZE) {
1099
		fprintf(stderr, "U-Boot image data size mismatch: "
1100
			"expected %zu, got %u\n", len - HEADER_SIZE, data_size);
1101
1102
1103
1104
1105
1106
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1107
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.c
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

1119
	aw_write_buffer(usb, buf + HEADER_SIZE, load_addr, data_size, false);
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
void aw_fel_process_spl_and_uboot(libusb_device_handle *usb,
		const char *filename)
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
	aw_fel_write_and_execute_spl(usb, buf, size);
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
1138
1139
	if (size > SPL_LEN_LIMIT)
		aw_fel_write_uboot_image(usb, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
1140
1141
}

1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
/*
 * Test the SPL header for our "sunxi" variant. We want to make sure that
 * we can safely use specific header fields to pass information to U-Boot.
 * In case of a missing signature (e.g. Allwinner boot0) or header version
 * mismatch, this function will return "false". If all seems fine,
 * the result is "true".
 */
#define SPL_SIGNATURE			"SPL" /* marks "sunxi" header */
#define SPL_MIN_VERSION			1 /* minimum required version */
#define SPL_MAX_VERSION			1 /* maximum supported version */
1152
bool have_sunxi_spl(libusb_device_handle *usb, uint32_t spl_addr)
1153
1154
1155
1156
1157
1158
1159
{
	uint8_t spl_signature[4];

	aw_fel_read(usb, spl_addr + 0x14,
		&spl_signature, sizeof(spl_signature));

	if (memcmp(spl_signature, SPL_SIGNATURE, 3) != 0)
1160
		return false; /* signature mismatch, no "sunxi" SPL */
1161
1162
1163
1164
1165
1166

	if (spl_signature[3] < SPL_MIN_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X < required minimum 0x%02X\n",
			spl_signature[3], SPL_MIN_VERSION);
		fprintf(stderr, "You need to update your U-Boot (mksunxiboot) to a more recent version.\n");
1167
		return false;
1168
1169
1170
1171
1172
1173
	}
	if (spl_signature[3] > SPL_MAX_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X > maximum supported 0x%02X\n",
			spl_signature[3], SPL_MAX_VERSION);
		fprintf(stderr, "You need a more recent version of this (sunxi-tools) fel utility.\n");
1174
		return false;
1175
	}
1176
	return true; /* sunxi SPL and suitable version */
1177
1178
1179
1180
}

/*
 * Pass information to U-Boot via specialized fields in the SPL header
1181
1182
 * (see "boot_file_head" in ${U-BOOT}/arch/arm/include/asm/arch-sunxi/spl.h),
 * providing the boot script address (DRAM location of boot.scr).
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
 */
void pass_fel_information(libusb_device_handle *usb, uint32_t script_address)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);

	/* write something _only_ if we have a suitable SPL header */
	if (have_sunxi_spl(usb, sram_info->spl_addr)) {
		pr_info("Passing boot info via sunxi SPL: script address = 0x%08X\n",
			script_address);
		aw_fel_write(usb, &script_address,
			sram_info->spl_addr + 0x18, sizeof(script_address));
	}
}

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
static int aw_fel_get_endpoint(libusb_device_handle *usb)
{
	struct libusb_device *dev = libusb_get_device(usb);
	struct libusb_config_descriptor *config;
	int if_idx, set_idx, ep_idx, ret;

	ret = libusb_get_active_config_descriptor(dev, &config);
	if (ret)
		return ret;

	for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
		const struct libusb_interface *iface = config->interface + if_idx;

		for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
			const struct libusb_interface_descriptor *setting =
				iface->altsetting + set_idx;

			for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
				const struct libusb_endpoint_descriptor *ep =
					setting->endpoint + ep_idx;

				// Test for bulk transfer endpoint
				if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) !=
						LIBUSB_TRANSFER_TYPE_BULK)
					continue;

				if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
						LIBUSB_ENDPOINT_IN)
					AW_USB_FEL_BULK_EP_IN = ep->bEndpointAddress;
				else
					AW_USB_FEL_BULK_EP_OUT = ep->bEndpointAddress;
			}
		}
	}

	libusb_free_config_descriptor(config);

	return 0;
}

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
/* private helper function, gets used for "write*" and "multi*" transfers */
static unsigned int file_upload(libusb_device_handle *handle, size_t count,
				size_t argc, char **argv, progress_cb_t progress)
{
	if (argc < count * 2) {
		fprintf(stderr, "error: too few arguments for uploading %zu files\n",
			count);
		exit(1);
	}

	/* get all file sizes, keeping track of total bytes */
	size_t size = 0;
	unsigned int i;
	for (i = 0; i < count; i++)
		size += file_size(argv[i * 2 + 1]);

	progress_start(progress, size); // set total size and progress callback

	/* now transfer each file in turn */
	for (i = 0; i < count; i++) {
		void *buf = load_file(argv[i * 2 + 1], &size);
		if (size > 0) {
			uint32_t offset = strtoul(argv[i * 2], NULL, 0);
			aw_write_buffer(handle, buf, offset, size, true);

			// If we transferred a script, try to inform U-Boot about its address.
			if (get_image_type(buf, size) == IH_TYPE_SCRIPT)
				pass_fel_information(handle, offset);
		}
		free(buf);
	}

	return i; // return number of files that were processed
}

1272
1273
int main(int argc, char **argv)
{
1274
	bool uboot_autostart = false; /* flag for "uboot" command = U-Boot autostart */
1275
	bool pflag_active = false; /* -p switch, causing "write" to output progress */
1276
1277
	int rc;
	libusb_device_handle *handle = NULL;
1278
	int iface_detached = -1;
1279
1280
1281
1282
	rc = libusb_init(NULL);
	assert(rc == 0);

	if (argc <= 1) {
1283
1284
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
1285
			"	-p, --progress			\"write\" transfers show a progress bar\n"
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
1297
1298
1299
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
1300
			"	read address length file	Write memory contents into file\n"
1301
			"	write address file		Store file contents into memory\n"
1302
			"	write-with-progress addr file	\"write\" with progress bar\n"
1303
1304
			"	write-with-gauge addr file	Output progress for \"dialog --gauge\"\n"
			"	write-with-xgauge addr file	Extended gauge output (updates prompt)\n"
1305
1306
			"	multi[write] # addr file ...	\"write-with-progress\" multiple files,\n"
			"					sharing a common progress status\n"
1307
1308
1309
			"	multi[write]-with-gauge ...	like their \"write-with-*\" counterpart,\n"
			"	multi[write]-with-xgauge ...	  but following the 'multi' syntax:\n"
			"					  <#> addr file [addr file [...]]\n"
1310
			"	echo-gauge \"some text\"		Update prompt/caption for gauge output\n"
1311
1312
			"	ver[sion]			Show BROM version\n"
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1313
			"	fill address length value	Fill memory\n"
1314
1315
1316
1317
1318
1319
			, argv[0]
		);
	}

	handle = libusb_open_device_with_vid_pid(NULL, 0x1f3a, 0xefe8);
	if (!handle) {
1320
1321
1322
1323
1324
1325
1326
1327
		switch (errno) {
		case EACCES:
			fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
			break;
		default:
			fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
			break;
		}
1328
1329
1330
		exit(1);
	}
	rc = libusb_claim_interface(handle, 0);
1331
1332
1333
1334
1335
1336
1337
#if defined(__linux__)
	if (rc != LIBUSB_SUCCESS) {
		libusb_detach_kernel_driver(handle, 0);
		iface_detached = 0;
		rc = libusb_claim_interface(handle, 0);
	}
#endif
1338
1339
	assert(rc == 0);

1340
1341
1342
1343
1344
	if (aw_fel_get_endpoint(handle)) {
		fprintf(stderr, "ERROR: Failed to get FEL mode endpoint addresses!\n");
		exit(1);
	}

1345
1346
	if (argc > 1 && (strcmp(argv[1], "--verbose") == 0 ||
			 strcmp(argv[1], "-v") == 0)) {
1347
		verbose = true;
1348
1349
1350
1351
		argc -= 1;
		argv += 1;
	}

1352
1353
	while (argc > 1 ) {
		int skip = 1;
1354
1355
1356
1357
1358

		if (strcmp(argv[1], "--progress") == 0 ||
		    strcmp(argv[1], "-p") == 0) {
			pflag_active = true;
		} else if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if ((strncmp(argv[1], "exe", 3) == 0 && argc > 2)
			) {
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
		} else if (strncmp(argv[1], "ver", 3) == 0 && argc > 1) {
1369
			aw_fel_print_version(handle);
1370
1371
			skip=1;
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1372
1373
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
					pflag_active ? progress_bar : NULL);
1374
1375
1376
		} else if (strcmp(argv[1], "write-with-progress") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_bar);
1377
1378
1379
1380
1381
1382
		} else if (strcmp(argv[1], "write-with-gauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge);
		} else if (strcmp(argv[1], "write-with-xgauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge_xxx);
1383
1384
1385
1386
1387
		} else if ((strcmp(argv[1], "multiwrite") == 0 ||
			    strcmp(argv[1], "multi") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_bar);
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
		} else if ((strcmp(argv[1], "multiwrite-with-gauge") == 0 ||
			    strcmp(argv[1], "multi-with-gauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge);
		} else if ((strcmp(argv[1], "multiwrite-with-xgauge") == 0 ||
			    strcmp(argv[1], "multi-with-xgauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge_xxx);
1398
1399
1400
1401
		} else if ((strcmp(argv[1], "echo-gauge") == 0) && argc > 2) {
			skip = 2;
			printf("XXX\n0\n%s\nXXX\n", argv[2]);
			fflush(stdout);
1402
1403
1404
1405
1406
1407
1408
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1409
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1410
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1411
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1412
1413
1414
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1415
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1416
1417
1418
1419
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
1420
1421
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
1422
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1423
			skip=2;
1424
1425
1426
1427
1428
1429
1430
1431
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

1432
	// auto-start U-Boot if requested (by the "uboot" command)
1433
	if (uboot_autostart) {
1434
1435
1436
1437
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1438
1439
1440
1441
1442
#if defined(__linux__)
	if (iface_detached >= 0)
		libusb_attach_kernel_driver(handle, iface_detached);
#endif

1443
1444
	return 0;
}