context_mgmt.c 23.1 KB
Newer Older
Achin Gupta's avatar
Achin Gupta committed
1
/*
2
 * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
Achin Gupta's avatar
Achin Gupta committed
3
 *
dp-arm's avatar
dp-arm committed
4
 * SPDX-License-Identifier: BSD-3-Clause
Achin Gupta's avatar
Achin Gupta committed
5
6
 */

7
8
9
10
11
12
#include <assert.h>
#include <stdbool.h>
#include <string.h>

#include <platform_def.h>

13
#include <arch.h>
Achin Gupta's avatar
Achin Gupta committed
14
#include <arch_helpers.h>
15
#include <arch_features.h>
16
17
#include <bl31/interrupt_mgmt.h>
#include <common/bl_common.h>
18
#include <context.h>
19
20
21
22
23
24
25
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>
#include <lib/extensions/mpam.h>
#include <lib/extensions/spe.h>
#include <lib/extensions/sve.h>
#include <lib/utils.h>
Achin Gupta's avatar
Achin Gupta committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


/*******************************************************************************
 * Context management library initialisation routine. This library is used by
 * runtime services to share pointers to 'cpu_context' structures for the secure
 * and non-secure states. Management of the structures and their associated
 * memory is not done by the context management library e.g. the PSCI service
 * manages the cpu context used for entry from and exit to the non-secure state.
 * The Secure payload dispatcher service manages the context(s) corresponding to
 * the secure state. It also uses this library to get access to the non-secure
 * state cpu context pointers.
 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
 * which will used for programming an entry into a lower EL. The same context
 * will used to save state upon exception entry from that EL.
 ******************************************************************************/
41
void __init cm_init(void)
Achin Gupta's avatar
Achin Gupta committed
42
43
44
45
46
47
48
{
	/*
	 * The context management library has only global data to intialize, but
	 * that will be done when the BSS is zeroed out
	 */
}

49
/*******************************************************************************
50
 * The following function initializes the cpu_context 'ctx' for
51
52
53
54
 * first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 *
 * The security state to initialize is determined by the SECURE attribute
55
 * of the entry_point_info.
56
 *
Paul Beesley's avatar
Paul Beesley committed
57
 * The EE and ST attributes are used to configure the endianness and secure
58
 * timer availability for the new execution context.
59
60
61
62
63
 *
 * To prepare the register state for entry call cm_prepare_el3_exit() and
 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
 * cm_e1_sysreg_context_restore().
 ******************************************************************************/
64
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
65
{
66
	unsigned int security_state;
67
	u_register_t scr_el3;
68
69
	el3_state_t *state;
	gp_regs_t *gp_regs;
70
	u_register_t sctlr_elx, actlr_elx;
71

72
	assert(ctx != NULL);
73

74
75
	security_state = GET_SECURITY_STATE(ep->h.attr);

76
	/* Clear any residual register values from the context */
77
	zeromem(ctx, sizeof(*ctx));
78
79

	/*
80
81
82
83
84
85
86
	 * SCR_EL3 was initialised during reset sequence in macro
	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
	 * affect the next EL.
	 *
	 * The following fields are initially set to zero and then updated to
	 * the required value depending on the state of the SPSR_EL3 and the
	 * Security state and entrypoint attributes of the next EL.
87
	 */
88
	scr_el3 = read_scr();
89
90
	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
			SCR_ST_BIT | SCR_HCE_BIT);
91
92
93
	/*
	 * SCR_NS: Set the security state of the next EL.
	 */
94
95
	if (security_state != SECURE)
		scr_el3 |= SCR_NS_BIT;
96
97
98
99
	/*
	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
	 *  Exception level as specified by SPSR.
	 */
100
101
	if (GET_RW(ep->spsr) == MODE_RW_64)
		scr_el3 |= SCR_RW_BIT;
102
103
104
105
106
	/*
	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
	 *  Secure timer registers to EL3, from AArch64 state only, if specified
	 *  by the entrypoint attributes.
	 */
107
	if (EP_GET_ST(ep->h.attr) != 0U)
108
109
		scr_el3 |= SCR_ST_BIT;

110
#if !HANDLE_EA_EL3_FIRST
111
112
113
114
115
	/*
	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
	 *  to EL3 when executing at a lower EL. When executing at EL3, External
	 *  Aborts are taken to EL3.
	 */
116
117
118
	scr_el3 &= ~SCR_EA_BIT;
#endif

119
120
121
122
123
#if FAULT_INJECTION_SUPPORT
	/* Enable fault injection from lower ELs */
	scr_el3 |= SCR_FIEN_BIT;
#endif

124
125
126
127
128
129
130
131
132
133
134
135
136
137
#if !CTX_INCLUDE_PAUTH_REGS
	/*
	 * If the pointer authentication registers aren't saved during world
	 * switches the value of the registers can be leaked from the Secure to
	 * the Non-secure world. To prevent this, rather than enabling pointer
	 * authentication everywhere, we only enable it in the Non-secure world.
	 *
	 * If the Secure world wants to use pointer authentication,
	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
	 */
	if (security_state == NON_SECURE)
		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
#endif /* !CTX_INCLUDE_PAUTH_REGS */

138
	/*
139
140
141
	 * Enable MTE support. Support is enabled unilaterally for the normal
	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
	 * set.
142
	 */
143
#if CTX_INCLUDE_MTE_REGS
144
	assert(get_armv8_5_mte_support() == MTE_IMPLEMENTED_ELX);
145
146
	scr_el3 |= SCR_ATA_BIT;
#else
147
	unsigned int mte = get_armv8_5_mte_support();
148
149
150
151
152
153
154
155
156
157
158
159
	if (mte == MTE_IMPLEMENTED_EL0) {
		/*
		 * Can enable MTE across both worlds as no MTE registers are
		 * used
		 */
		scr_el3 |= SCR_ATA_BIT;
	} else if (mte == MTE_IMPLEMENTED_ELX && security_state == NON_SECURE) {
		/*
		 * Can only enable MTE in Non-Secure world without register
		 * saving
		 */
		scr_el3 |= SCR_ATA_BIT;
160
	}
161
#endif
162

163
#ifdef IMAGE_BL31
164
	/*
Paul Beesley's avatar
Paul Beesley committed
165
	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
166
	 *  indicated by the interrupt routing model for BL31.
167
	 */
168
	scr_el3 |= get_scr_el3_from_routing_model(security_state);
169
#endif
170
171

	/*
172
173
174
175
	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
	 * next mode is Hyp.
	 */
176
177
178
	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
	    || ((GET_RW(ep->spsr) != MODE_RW_64)
		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
179
180
181
		scr_el3 |= SCR_HCE_BIT;
	}

Achin Gupta's avatar
Achin Gupta committed
182
	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
183
184
185
186
187
188
	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
		if (GET_RW(ep->spsr) != MODE_RW_64) {
			ERROR("S-EL2 can not be used in AArch32.");
			panic();
		}

Achin Gupta's avatar
Achin Gupta committed
189
		scr_el3 |= SCR_EEL2_BIT;
190
	}
Achin Gupta's avatar
Achin Gupta committed
191

192
193
194
195
196
	/*
	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
	 * execution state setting all fields rather than relying of the hw.
	 * Some fields have architecturally UNKNOWN reset values and these are
	 * set to zero.
197
	 *
198
	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
199
	 *
200
201
	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
	 *  required by PSCI specification)
202
	 */
203
	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
204
205
	if (GET_RW(ep->spsr) == MODE_RW_64)
		sctlr_elx |= SCTLR_EL1_RES1;
206
207
	else {
		/*
208
209
210
211
212
213
214
215
216
217
218
		 * If the target execution state is AArch32 then the following
		 * fields need to be set.
		 *
		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
		 *  instructions are not trapped to EL1.
		 *
		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
219
		 */
220
221
		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
222
223
	}

224
225
226
227
228
229
230
231
#if ERRATA_A75_764081
	/*
	 * If workaround of errata 764081 for Cortex-A75 is used then set
	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
	 */
	sctlr_elx |= SCTLR_IESB_BIT;
#endif

232
233
	/*
	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
Paul Beesley's avatar
Paul Beesley committed
234
	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
235
236
	 * are not part of the stored cpu_context.
	 */
237
238
	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);

239
240
241
242
243
244
245
246
247
248
	/*
	 * Base the context ACTLR_EL1 on the current value, as it is
	 * implementation defined. The context restore process will write
	 * the value from the context to the actual register and can cause
	 * problems for processor cores that don't expect certain bits to
	 * be zero.
	 */
	actlr_elx = read_actlr_el1();
	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));

249
250
251
252
	/*
	 * Populate EL3 state so that we've the right context
	 * before doing ERET
	 */
253
254
255
256
257
258
259
260
261
262
263
264
265
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);

	/*
	 * Store the X0-X7 value from the entrypoint into the context
	 * Use memcpy as we are in control of the layout of the structures
	 */
	gp_regs = get_gpregs_ctx(ctx);
	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
}

266
267
268
269
270
/*******************************************************************************
 * Enable architecture extensions on first entry to Non-secure world.
 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
 * it is zero.
 ******************************************************************************/
271
static void enable_extensions_nonsecure(bool el2_unused)
272
273
{
#if IMAGE_BL31
274
275
276
#if ENABLE_SPE_FOR_LOWER_ELS
	spe_enable(el2_unused);
#endif
277
278
279
280

#if ENABLE_AMU
	amu_enable(el2_unused);
#endif
David Cunado's avatar
David Cunado committed
281
282
283
284

#if ENABLE_SVE_FOR_NS
	sve_enable(el2_unused);
#endif
285
286
287
288

#if ENABLE_MPAM_FOR_LOWER_ELS
	mpam_enable(el2_unused);
#endif
289
290
291
#endif
}

292
293
294
295
296
297
298
299
300
301
/*******************************************************************************
 * The following function initializes the cpu_context for a CPU specified by
 * its `cpu_idx` for first use, and sets the initial entrypoint state as
 * specified by the entry_point_info structure.
 ******************************************************************************/
void cm_init_context_by_index(unsigned int cpu_idx,
			      const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
302
	cm_setup_context(ctx, ep);
303
304
305
306
307
308
309
310
311
312
313
}

/*******************************************************************************
 * The following function initializes the cpu_context for the current CPU
 * for first use, and sets the initial entrypoint state as specified by the
 * entry_point_info structure.
 ******************************************************************************/
void cm_init_my_context(const entry_point_info_t *ep)
{
	cpu_context_t *ctx;
	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
314
	cm_setup_context(ctx, ep);
315
316
}

317
318
319
320
321
322
323
324
325
326
/*******************************************************************************
 * Prepare the CPU system registers for first entry into secure or normal world
 *
 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
 * For all entries, the EL1 registers are initialized from the cpu_context
 ******************************************************************************/
void cm_prepare_el3_exit(uint32_t security_state)
{
327
	u_register_t sctlr_elx, scr_el3, mdcr_el2;
328
	cpu_context_t *ctx = cm_get_context(security_state);
329
	bool el2_unused = false;
330
	uint64_t hcr_el2 = 0U;
331

332
	assert(ctx != NULL);
333
334

	if (security_state == NON_SECURE) {
335
		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
336
337
						 CTX_SCR_EL3);
		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
338
			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
339
			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
340
							   CTX_SCTLR_EL1);
Ken Kuang's avatar
Ken Kuang committed
341
			sctlr_elx &= SCTLR_EE_BIT;
342
			sctlr_elx |= SCTLR_EL2_RES1;
343
344
345
346
347
348
349
350
#if ERRATA_A75_764081
			/*
			 * If workaround of errata 764081 for Cortex-A75 is used
			 * then set SCTLR_EL2.IESB to enable Implicit Error
			 * Synchronization Barrier.
			 */
			sctlr_elx |= SCTLR_IESB_BIT;
#endif
351
			write_sctlr_el2(sctlr_elx);
352
		} else if (el_implemented(2) != EL_IMPL_NONE) {
353
			el2_unused = true;
354

355
356
357
358
			/*
			 * EL2 present but unused, need to disable safely.
			 * SCTLR_EL2 can be ignored in this case.
			 *
359
360
			 * Set EL2 register width appropriately: Set HCR_EL2
			 * field to match SCR_EL3.RW.
361
			 */
362
			if ((scr_el3 & SCR_RW_BIT) != 0U)
363
364
365
366
367
368
369
370
371
372
				hcr_el2 |= HCR_RW_BIT;

			/*
			 * For Armv8.3 pointer authentication feature, disable
			 * traps to EL2 when accessing key registers or using
			 * pointer authentication instructions from lower ELs.
			 */
			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);

			write_hcr_el2(hcr_el2);
373

374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
			/*
			 * Initialise CPTR_EL2 setting all fields rather than
			 * relying on the hw. All fields have architecturally
			 * UNKNOWN reset values.
			 *
			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
			 *  accesses to the CPACR_EL1 or CPACR from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
			 *  register accesses to the trace registers from both
			 *  Execution states do not trap to EL2.
			 *
			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
			 *  to SIMD and floating-point functionality from both
			 *  Execution states do not trap to EL2.
			 */
			write_cptr_el2(CPTR_EL2_RESET_VAL &
					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
					| CPTR_EL2_TFP_BIT));
394

395
			/*
Paul Beesley's avatar
Paul Beesley committed
396
			 * Initialise CNTHCTL_EL2. All fields are
397
398
399
400
401
402
403
404
405
406
407
408
409
			 * architecturally UNKNOWN on reset and are set to zero
			 * except for field(s) listed below.
			 *
			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
			 *  physical timer registers.
			 *
			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
			 *  physical counter registers.
			 */
			write_cnthctl_el2(CNTHCTL_RESET_VAL |
						EL1PCEN_BIT | EL1PCTEN_BIT);
410

411
412
413
414
			/*
			 * Initialise CNTVOFF_EL2 to zero as it resets to an
			 * architecturally UNKNOWN value.
			 */
415
416
			write_cntvoff_el2(0);

417
418
419
420
			/*
			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
			 * MPIDR_EL1 respectively.
			 */
421
422
			write_vpidr_el2(read_midr_el1());
			write_vmpidr_el2(read_mpidr_el1());
423
424

			/*
425
426
427
428
429
430
431
432
433
			 * Initialise VTTBR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
			 *  2 address translation is disabled, cache maintenance
			 *  operations depend on the VMID.
			 *
			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
			 *  translation is disabled.
434
			 */
435
436
437
438
			write_vttbr_el2(VTTBR_RESET_VAL &
				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));

439
			/*
440
441
442
443
			 * Initialise MDCR_EL2, setting all fields rather than
			 * relying on hw. Some fields are architecturally
			 * UNKNOWN on reset.
			 *
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
			 * MDCR_EL2.HLP: Set to one so that event counter
			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
			 *  occurs on the increment that changes
			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
			 *  implemented. This bit is RES0 in versions of the
			 *  architecture earlier than ARMv8.5, setting it to 1
			 *  doesn't have any effect on them.
			 *
			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
			 *  Filter Control register TRFCR_EL1 at EL1 is not
			 *  trapped to EL2. This bit is RES0 in versions of
			 *  the architecture earlier than ARMv8.4.
			 *
			 * MDCR_EL2.HPMD: Set to one so that event counting is
			 *  prohibited at EL2. This bit is RES0 in versions of
			 *  the architecture earlier than ARMv8.1, setting it
			 *  to 1 doesn't have any effect on them.
			 *
			 * MDCR_EL2.TPMS: Set to zero so that accesses to
			 *  Statistical Profiling control registers from EL1
			 *  do not trap to EL2. This bit is RES0 when SPE is
			 *  not implemented.
			 *
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
			 *  EL1 System register accesses to the Debug ROM
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
			 *  System register accesses to the powerdown debug
			 *  registers are not trapped to EL2.
			 *
			 * MDCR_EL2.TDA: Set to zero so that System register
			 *  accesses to the debug registers do not trap to EL2.
			 *
			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
			 *  are not routed to EL2.
			 *
			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
			 *  Monitors.
			 *
			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
			 *  EL1 accesses to all Performance Monitors registers
			 *  are not trapped to EL2.
			 *
			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
			 *  trapped to EL2.
			 *
			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
			 *  architecturally-defined reset value.
494
			 */
495
496
497
498
499
500
501
502
503
			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
				     MDCR_EL2_HPMD) |
				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
				   >> PMCR_EL0_N_SHIFT)) &
				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
				     MDCR_EL2_TPMCR_BIT);
504
505
506

			write_mdcr_el2(mdcr_el2);

507
			/*
508
509
510
511
512
513
			 * Initialise HSTR_EL2. All fields are architecturally
			 * UNKNOWN on reset.
			 *
			 * HSTR_EL2.T<n>: Set all these fields to zero so that
			 *  Non-secure EL0 or EL1 accesses to System registers
			 *  do not trap to EL2.
514
			 */
515
			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
516
			/*
517
518
519
520
521
			 * Initialise CNTHP_CTL_EL2. All fields are
			 * architecturally UNKNOWN on reset.
			 *
			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
			 *  physical timer and prevent timer interrupts.
522
			 */
523
524
			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
						~(CNTHP_CTL_ENABLE_BIT));
525
		}
526
		enable_extensions_nonsecure(el2_unused);
527
528
	}

529
530
	cm_el1_sysregs_context_restore(security_state);
	cm_set_next_eret_context(security_state);
531
532
}

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
#if CTX_INCLUDE_EL2_REGS
/*******************************************************************************
 * Save EL2 sysreg context
 ******************************************************************************/
void cm_el2_sysregs_context_save(uint32_t security_state)
{
	u_register_t scr_el3 = read_scr();

	/*
	 * Always save the non-secure EL2 context, only save the
	 * S-EL2 context if S-EL2 is enabled.
	 */
	if ((security_state == NON_SECURE) ||
	    ((scr_el3 & SCR_EEL2_BIT) != 0U)) {
		cpu_context_t *ctx;

		ctx = cm_get_context(security_state);
		assert(ctx != NULL);

		el2_sysregs_context_save(get_sysregs_ctx(ctx));
	}
}

/*******************************************************************************
 * Restore EL2 sysreg context
 ******************************************************************************/
void cm_el2_sysregs_context_restore(uint32_t security_state)
{
	u_register_t scr_el3 = read_scr();

	/*
	 * Always restore the non-secure EL2 context, only restore the
	 * S-EL2 context if S-EL2 is enabled.
	 */
	if ((security_state == NON_SECURE) ||
	    ((scr_el3 & SCR_EEL2_BIT) != 0U)) {
		cpu_context_t *ctx;

		ctx = cm_get_context(security_state);
		assert(ctx != NULL);

		el2_sysregs_context_restore(get_sysregs_ctx(ctx));
	}
}
#endif /* CTX_INCLUDE_EL2_REGS */

Achin Gupta's avatar
Achin Gupta committed
579
/*******************************************************************************
580
581
 * The next four functions are used by runtime services to save and restore
 * EL1 context on the 'cpu_context' structure for the specified security
Achin Gupta's avatar
Achin Gupta committed
582
583
584
585
 * state.
 ******************************************************************************/
void cm_el1_sysregs_context_save(uint32_t security_state)
{
586
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
587

588
	ctx = cm_get_context(security_state);
589
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
590
591

	el1_sysregs_context_save(get_sysregs_ctx(ctx));
592
593
594
595
596
597
598

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_exited_secure_world);
	else
		PUBLISH_EVENT(cm_exited_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
599
600
601
602
}

void cm_el1_sysregs_context_restore(uint32_t security_state)
{
603
	cpu_context_t *ctx;
Achin Gupta's avatar
Achin Gupta committed
604

605
	ctx = cm_get_context(security_state);
606
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
607
608

	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
609
610
611
612
613
614
615

#if IMAGE_BL31
	if (security_state == SECURE)
		PUBLISH_EVENT(cm_entering_secure_world);
	else
		PUBLISH_EVENT(cm_entering_normal_world);
#endif
Achin Gupta's avatar
Achin Gupta committed
616
617
618
}

/*******************************************************************************
619
620
 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
 * given security state with the given entrypoint
621
 ******************************************************************************/
622
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
623
{
624
625
	cpu_context_t *ctx;
	el3_state_t *state;
626

627
	ctx = cm_get_context(security_state);
628
	assert(ctx != NULL);
629

630
	/* Populate EL3 state so that ERET jumps to the correct entry */
631
632
633
634
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
}

635
/*******************************************************************************
636
637
 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
 * pertaining to the given security state
638
 ******************************************************************************/
639
void cm_set_elr_spsr_el3(uint32_t security_state,
640
			uintptr_t entrypoint, uint32_t spsr)
641
{
642
643
	cpu_context_t *ctx;
	el3_state_t *state;
644

645
	ctx = cm_get_context(security_state);
646
	assert(ctx != NULL);
647
648
649
650

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
651
	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
652
653
}

654
655
656
657
658
659
660
661
662
663
664
/*******************************************************************************
 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
 * pertaining to the given security state using the value and bit position
 * specified in the parameters. It preserves all other bits.
 ******************************************************************************/
void cm_write_scr_el3_bit(uint32_t security_state,
			  uint32_t bit_pos,
			  uint32_t value)
{
	cpu_context_t *ctx;
	el3_state_t *state;
665
	u_register_t scr_el3;
666

667
	ctx = cm_get_context(security_state);
668
	assert(ctx != NULL);
669
670

	/* Ensure that the bit position is a valid one */
671
	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
672
673

	/* Ensure that the 'value' is only a bit wide */
674
	assert(value <= 1U);
675
676
677
678
679
680

	/*
	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
	 * and set it to its new value.
	 */
	state = get_el3state_ctx(ctx);
681
	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
682
	scr_el3 &= ~(1U << bit_pos);
683
	scr_el3 |= (u_register_t)value << bit_pos;
684
685
686
687
688
689
690
	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
}

/*******************************************************************************
 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
 * given security state.
 ******************************************************************************/
691
u_register_t cm_get_scr_el3(uint32_t security_state)
692
693
694
695
{
	cpu_context_t *ctx;
	el3_state_t *state;

696
	ctx = cm_get_context(security_state);
697
	assert(ctx != NULL);
698
699
700

	/* Populate EL3 state so that ERET jumps to the correct entry */
	state = get_el3state_ctx(ctx);
701
	return read_ctx_reg(state, CTX_SCR_EL3);
702
703
}

704
705
706
707
/*******************************************************************************
 * This function is used to program the context that's used for exception
 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
 * the required security state
Achin Gupta's avatar
Achin Gupta committed
708
709
710
 ******************************************************************************/
void cm_set_next_eret_context(uint32_t security_state)
{
711
	cpu_context_t *ctx;
712

713
	ctx = cm_get_context(security_state);
714
	assert(ctx != NULL);
Achin Gupta's avatar
Achin Gupta committed
715

716
	cm_set_next_context(ctx);
Achin Gupta's avatar
Achin Gupta committed
717
}