psci_afflvl_suspend.c 17.7 KB
Newer Older
1
/*
2
 * Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of ARM nor the names of its contributors may be used
 * to endorse or promote products derived from this software without specific
 * prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <assert.h>
32
33
#include <bl_common.h>
#include <arch.h>
34
#include <arch_helpers.h>
35
#include <context.h>
36
#include <context_mgmt.h>
37
#include <runtime_svc.h>
38
#include <stddef.h>
39
#include "psci_private.h"
40

41
typedef int (*afflvl_suspend_handler_t)(aff_map_node_t *,
42
43
44
45
				      unsigned long,
				      unsigned long,
				      unsigned int);

46
/*******************************************************************************
47
48
 * This function sets the power state of the current cpu while
 * powering down during a cpu_suspend call
49
 ******************************************************************************/
50
void psci_set_suspend_power_state(aff_map_node_t *node, unsigned int power_state)
51
52
53
54
55
56
57
58
59
{
	/*
	 * Check that nobody else is calling this function on our behalf &
	 * this information is being set only in the cpu node
	 */
	assert(node->mpidr == (read_mpidr() & MPIDR_AFFINITY_MASK));
	assert(node->level == MPIDR_AFFLVL0);

	/*
60
61
	 * Save PSCI power state parameter for the core in suspend context.
	 * The node is in always-coherent RAM so it does not need to be flushed
62
	 */
63
	node->power_state = power_state;
64
65
}

66
67
68
69
70
71
72
/*******************************************************************************
 * This function gets the affinity level till which a cpu is powered down
 * during a cpu_suspend call. Returns PSCI_INVALID_DATA if the
 * power state saved for the node is invalid
 ******************************************************************************/
int psci_get_suspend_afflvl(unsigned long mpidr)
{
73
	aff_map_node_t *node;
74
75
76
77
78
79
80
81
82

	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
	assert(node);

	return psci_get_aff_map_node_suspend_afflvl(node);
}


83
84
/*******************************************************************************
 * This function gets the affinity level till which the current cpu was powered
85
86
87
 * down during a cpu_suspend call. Returns PSCI_INVALID_DATA if the
 * power state saved for the node is invalid
 ******************************************************************************/
88
int psci_get_aff_map_node_suspend_afflvl(aff_map_node_t *node)
89
90
91
92
93
{
	unsigned int power_state;

	assert(node->level == MPIDR_AFFLVL0);

94
	power_state = node->power_state;
95
96
97
98
99
100
101
102
	return ((power_state == PSCI_INVALID_DATA) ?
				power_state : psci_get_pstate_afflvl(power_state));
}

/*******************************************************************************
 * This function gets the state id of a cpu stored in suspend context
 * while powering down during a cpu_suspend call. Returns 0xFFFFFFFF
 * if the power state saved for the node is invalid
103
 ******************************************************************************/
104
int psci_get_suspend_stateid(unsigned long mpidr)
105
{
106
	aff_map_node_t *node;
107
108
109
110
111
112
113
	unsigned int power_state;

	node = psci_get_aff_map_node(mpidr & MPIDR_AFFINITY_MASK,
			MPIDR_AFFLVL0);
	assert(node);
	assert(node->level == MPIDR_AFFLVL0);

114
	power_state = node->power_state;
115
116
	return ((power_state == PSCI_INVALID_DATA) ?
					power_state : psci_get_pstate_id(power_state));
117
118
}

119
120
121
122
/*******************************************************************************
 * The next three functions implement a handler for each supported affinity
 * level which is called when that affinity level is about to be suspended.
 ******************************************************************************/
123
static int psci_afflvl0_suspend(aff_map_node_t *cpu_node,
124
125
126
127
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
128
	unsigned int plat_state;
129
	unsigned long psci_entrypoint;
130
131
132
	uint32_t ns_scr_el3 = read_scr_el3();
	uint32_t ns_sctlr_el1 = read_sctlr_el1();
	int rc;
133
134
135
136

	/* Sanity check to safeguard against data corruption */
	assert(cpu_node->level == MPIDR_AFFLVL0);

137
138
139
	/* Save PSCI power state parameter for the core in suspend context */
	psci_set_suspend_power_state(cpu_node, power_state);

140
141
142
143
144
145
146
147
148
149
	/*
	 * Generic management: Store the re-entry information for the non-secure
	 * world and allow the secure world to suspend itself
	 */

	/*
	 * Call the cpu suspend handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
150
151
	if (psci_spd_pm && psci_spd_pm->svc_suspend)
		psci_spd_pm->svc_suspend(power_state);
152

153
154
155
	/* State management: mark this cpu as suspended */
	psci_set_state(cpu_node, PSCI_STATE_SUSPEND);

156
157
158
159
	/*
	 * Generic management: Store the re-entry information for the
	 * non-secure world
	 */
160
161
	rc = psci_save_ns_entry(read_mpidr_el1(), ns_entrypoint, context_id,
				ns_scr_el3, ns_sctlr_el1);
162
163
164
165
	if (rc != PSCI_E_SUCCESS)
		return rc;

	/*
166
167
	 * Arch. management: Save the EL3 state in the 'cpu_context'
	 * structure that has been allocated for this cpu, flush the
168
169
	 * L1 caches and exit intra-cluster coherency et al
	 */
170
	cm_el3_sysregs_context_save(NON_SECURE);
171
172
173
174
175
176
177
178

	/* Set the secure world (EL3) re-entry point after BL1 */
	psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;

	/*
	 * Arch. management. Perform the necessary steps to flush all
	 * cpu caches.
	 */
179
	psci_do_pwrdown_cache_maintenance(MPIDR_AFFLVL0);
180
181
182
183
184
185
186

	/*
	 * Plat. management: Allow the platform to perform the
	 * necessary actions to turn off this cpu e.g. set the
	 * platform defined mailbox with the psci entrypoint,
	 * program the power controller etc.
	 */
187
188
	rc = PSCI_E_SUCCESS;

189
	if (psci_plat_pm_ops->affinst_suspend) {
190
		plat_state = psci_get_phys_state(cpu_node);
191
		rc = psci_plat_pm_ops->affinst_suspend(read_mpidr_el1(),
192
193
194
195
196
197
198
199
200
						       psci_entrypoint,
						       ns_entrypoint,
						       cpu_node->level,
						       plat_state);
	}

	return rc;
}

201
static int psci_afflvl1_suspend(aff_map_node_t *cluster_node,
202
203
204
205
206
207
208
209
210
211
212
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Sanity check the cluster level */
	assert(cluster_node->level == MPIDR_AFFLVL1);

213
214
215
	/* State management: Decrement the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_SUSPEND);

216
217
218
219
	/*
	 * Keep the physical state of this cluster handy to decide
	 * what action needs to be taken
	 */
220
	plat_state = psci_get_phys_state(cluster_node);
221
222
223
224
225
226
227
228
229

	/*
	 * Arch. management: Flush all levels of caches to PoC if the
	 * cluster is to be shutdown
	 */
	if (plat_state == PSCI_STATE_OFF)
		dcsw_op_all(DCCISW);

	/*
230
	 * Plat. Management. Allow the platform to do its cluster
231
232
233
234
235
236
237
238
239
240
241
242
	 * specific bookeeping e.g. turn off interconnect coherency,
	 * program the power controller etc.
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
243
		rc = psci_plat_pm_ops->affinst_suspend(read_mpidr_el1(),
244
245
246
247
248
249
250
251
252
253
						       psci_entrypoint,
						       ns_entrypoint,
						       cluster_node->level,
						       plat_state);
	}

	return rc;
}


254
static int psci_afflvl2_suspend(aff_map_node_t *system_node,
255
256
257
258
259
260
261
262
263
264
265
				unsigned long ns_entrypoint,
				unsigned long context_id,
				unsigned int power_state)
{
	int rc = PSCI_E_SUCCESS;
	unsigned int plat_state;
	unsigned long psci_entrypoint;

	/* Cannot go beyond this */
	assert(system_node->level == MPIDR_AFFLVL2);

266
267
268
	/* State management: Decrement the system reference count */
	psci_set_state(system_node, PSCI_STATE_SUSPEND);

269
270
271
272
	/*
	 * Keep the physical state of the system handy to decide what
	 * action needs to be taken
	 */
273
	plat_state = psci_get_phys_state(system_node);
274
275

	/*
276
	 * Plat. Management : Allow the platform to do its bookeeping
277
278
279
280
281
282
283
284
285
286
287
	 * at this affinity level
	 */
	if (psci_plat_pm_ops->affinst_suspend) {

		/*
		 * Sending the psci entrypoint is currently redundant
		 * beyond affinity level 0 but one never knows what a
		 * platform might do. Also it allows us to keep the
		 * platform handler prototype the same.
		 */
		psci_entrypoint = (unsigned long) psci_aff_suspend_finish_entry;
288
		rc = psci_plat_pm_ops->affinst_suspend(read_mpidr_el1(),
289
290
291
292
293
294
295
296
297
						       psci_entrypoint,
						       ns_entrypoint,
						       system_node->level,
						       plat_state);
	}

	return rc;
}

298
static const afflvl_suspend_handler_t psci_afflvl_suspend_handlers[] = {
299
300
301
302
303
304
	psci_afflvl0_suspend,
	psci_afflvl1_suspend,
	psci_afflvl2_suspend,
};

/*******************************************************************************
305
306
307
308
 * This function takes an array of pointers to affinity instance nodes in the
 * topology tree and calls the suspend handler for the corresponding affinity
 * levels
 ******************************************************************************/
309
static int psci_call_suspend_handlers(mpidr_aff_map_nodes_t mpidr_nodes,
310
311
312
313
314
315
316
				      int start_afflvl,
				      int end_afflvl,
				      unsigned long entrypoint,
				      unsigned long context_id,
				      unsigned int power_state)
{
	int rc = PSCI_E_INVALID_PARAMS, level;
317
	aff_map_node_t *node;
318
319
320
321
322
323
324
325
326
327
328

	for (level = start_afflvl; level <= end_afflvl; level++) {
		node = mpidr_nodes[level];
		if (node == NULL)
			continue;

		/*
		 * TODO: In case of an error should there be a way
		 * of restoring what we might have torn down at
		 * lower affinity levels.
		 */
329
		rc = psci_afflvl_suspend_handlers[level](node,
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
							 entrypoint,
							 context_id,
							 power_state);
		if (rc != PSCI_E_SUCCESS)
			break;
	}

	return rc;
}

/*******************************************************************************
 * Top level handler which is called when a cpu wants to suspend its execution.
 * It is assumed that along with turning the cpu off, higher affinity levels
 * until the target affinity level will be turned off as well. It traverses
 * through all the affinity levels performing generic, architectural, platform
 * setup and state management e.g. for a cluster that's to be suspended, it will
 * call the platform specific code which will disable coherency at the
 * interconnect level if the cpu is the last in the cluster. For a cpu it could
 * mean programming the power controller etc.
 *
 * The state of all the relevant affinity levels is changed prior to calling the
 * affinity level specific handlers as their actions would depend upon the state
 * the affinity level is about to enter.
 *
 * The affinity level specific handlers are called in ascending order i.e. from
 * the lowest to the highest affinity level implemented by the platform because
 * to turn off affinity level X it is neccesary to turn off affinity level X - 1
 * first.
358
 ******************************************************************************/
359
int psci_afflvl_suspend(unsigned long entrypoint,
360
361
			unsigned long context_id,
			unsigned int power_state,
362
363
			int start_afflvl,
			int end_afflvl)
364
{
365
	int rc = PSCI_E_SUCCESS;
366
	mpidr_aff_map_nodes_t mpidr_nodes;
367
368

	/*
369
370
371
372
	 * Collect the pointers to the nodes in the topology tree for
	 * each affinity instance in the mpidr. If this function does
	 * not return successfully then either the mpidr or the affinity
	 * levels are incorrect.
373
	 */
374
	rc = psci_get_aff_map_nodes(read_mpidr_el1() & MPIDR_AFFINITY_MASK,
375
376
377
378
379
				    start_afflvl,
				    end_afflvl,
				    mpidr_nodes);
	if (rc != PSCI_E_SUCCESS)
		return rc;
380
381

	/*
382
383
384
	 * This function acquires the lock corresponding to each affinity
	 * level so that by the time all locks are taken, the system topology
	 * is snapshot and state management can be done safely.
385
	 */
386
	psci_acquire_afflvl_locks(start_afflvl,
387
388
				  end_afflvl,
				  mpidr_nodes);
389

390
391
392
393
394
395
396
	/* Perform generic, architecture and platform specific handling */
	rc = psci_call_suspend_handlers(mpidr_nodes,
					start_afflvl,
					end_afflvl,
					entrypoint,
					context_id,
					power_state);
397
398

	/*
399
400
	 * Release the locks corresponding to each affinity level in the
	 * reverse order to which they were acquired.
401
	 */
402
	psci_release_afflvl_locks(start_afflvl,
403
404
				  end_afflvl,
				  mpidr_nodes);
405
406
407
408
409
410
411
412

	return rc;
}

/*******************************************************************************
 * The following functions finish an earlier affinity suspend request. They
 * are called by the common finisher routine in psci_common.c.
 ******************************************************************************/
413
static unsigned int psci_afflvl0_suspend_finish(aff_map_node_t *cpu_node)
414
{
415
	unsigned int plat_state, state, rc;
416
	int32_t suspend_level;
417
418
419

	assert(cpu_node->level == MPIDR_AFFLVL0);

420
	/* Ensure we have been woken up from a suspended state */
421
	state = psci_get_state(cpu_node);
422
423
	assert(state == PSCI_STATE_SUSPEND);

424
425
426
427
428
429
430
431
	/*
	 * Plat. management: Perform the platform specific actions
	 * before we change the state of the cpu e.g. enabling the
	 * gic or zeroing the mailbox register. If anything goes
	 * wrong then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
432
433

		/* Get the physical state of this cpu */
434
		plat_state = get_phys_state(state);
435
		rc = psci_plat_pm_ops->affinst_suspend_finish(read_mpidr_el1(),
436
437
438
439
440
441
442
							      cpu_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

	/* Get the index for restoring the re-entry information */
	/*
443
444
445
	 * Arch. management: Enable the data cache, manage stack memory and
	 * restore the stashed EL3 architectural context from the 'cpu_context'
	 * structure for this cpu.
446
	 */
447
	psci_do_pwrup_cache_maintenance();
448
	cm_el3_sysregs_context_restore(NON_SECURE);
449

450
451
452
453
454
	/*
	 * Call the cpu suspend finish handler registered by the Secure Payload
	 * Dispatcher to let it do any bookeeping. If the handler encounters an
	 * error, it's expected to assert within
	 */
455
	if (psci_spd_pm && psci_spd_pm->svc_suspend) {
456
457
		suspend_level = psci_get_aff_map_node_suspend_afflvl(cpu_node);
		assert (suspend_level != PSCI_INVALID_DATA);
458
		psci_spd_pm->svc_suspend_finish(suspend_level);
459
460
	}

461
462
463
	/* Invalidate the suspend context for the node */
	psci_set_suspend_power_state(cpu_node, PSCI_INVALID_DATA);

464
465
466
	/*
	 * Generic management: Now we just need to retrieve the
	 * information that we had stashed away during the suspend
467
	 * call to set this cpu on its way.
468
	 */
469
	cm_prepare_el3_exit(NON_SECURE);
470

471
472
473
	/* State management: mark this cpu as on */
	psci_set_state(cpu_node, PSCI_STATE_ON);

474
475
476
	/* Clean caches before re-entering normal world */
	dcsw_op_louis(DCCSW);

477
	rc = PSCI_E_SUCCESS;
478
479
480
	return rc;
}

481
static unsigned int psci_afflvl1_suspend_finish(aff_map_node_t *cluster_node)
482
{
483
	unsigned int plat_state, rc = PSCI_E_SUCCESS;
484
485
486
487
488
489
490
491
492
493
494
495

	assert(cluster_node->level == MPIDR_AFFLVL1);

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
496
497

		/* Get the physical state of this cpu */
498
		plat_state = psci_get_phys_state(cluster_node);
499
		rc = psci_plat_pm_ops->affinst_suspend_finish(read_mpidr_el1(),
500
501
502
503
504
							      cluster_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

505
506
507
	/* State management: Increment the cluster reference count */
	psci_set_state(cluster_node, PSCI_STATE_ON);

508
509
510
511
	return rc;
}


512
static unsigned int psci_afflvl2_suspend_finish(aff_map_node_t *system_node)
513
{
514
	unsigned int plat_state, rc = PSCI_E_SUCCESS;;
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532

	/* Cannot go beyond this affinity level */
	assert(system_node->level == MPIDR_AFFLVL2);

	/*
	 * Currently, there are no architectural actions to perform
	 * at the system level.
	 */

	/*
	 * Plat. management: Perform the platform specific actions
	 * as per the old state of the cluster e.g. enabling
	 * coherency at the interconnect depends upon the state with
	 * which this cluster was powered up. If anything goes wrong
	 * then assert as there is no way to recover from this
	 * situation.
	 */
	if (psci_plat_pm_ops->affinst_suspend_finish) {
533
534

		/* Get the physical state of the system */
535
		plat_state = psci_get_phys_state(system_node);
536
		rc = psci_plat_pm_ops->affinst_suspend_finish(read_mpidr_el1(),
537
538
539
540
541
							      system_node->level,
							      plat_state);
		assert(rc == PSCI_E_SUCCESS);
	}

542
543
544
	/* State management: Increment the system reference count */
	psci_set_state(system_node, PSCI_STATE_ON);

545
546
547
	return rc;
}

548
const afflvl_power_on_finisher_t psci_afflvl_suspend_finishers[] = {
549
550
551
552
	psci_afflvl0_suspend_finish,
	psci_afflvl1_suspend_finish,
	psci_afflvl2_suspend_finish,
};