stm32mp1_private.c 9.16 KB
Newer Older
1
/*
2
 * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
3
4
5
6
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

7
8
#include <assert.h>

9
10
#include <libfdt.h>

11
12
#include <platform_def.h>

Yann Gautier's avatar
Yann Gautier committed
13
#include <drivers/st/stm32_iwdg.h>
14
15
#include <lib/xlat_tables/xlat_tables_v2.h>

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/* Internal layout of the 32bit OTP word board_id */
#define BOARD_ID_BOARD_NB_MASK		GENMASK(31, 16)
#define BOARD_ID_BOARD_NB_SHIFT		16
#define BOARD_ID_VARIANT_MASK		GENMASK(15, 12)
#define BOARD_ID_VARIANT_SHIFT		12
#define BOARD_ID_REVISION_MASK		GENMASK(11, 8)
#define BOARD_ID_REVISION_SHIFT		8
#define BOARD_ID_BOM_MASK		GENMASK(3, 0)

#define BOARD_ID2NB(_id)		(((_id) & BOARD_ID_BOARD_NB_MASK) >> \
					 BOARD_ID_BOARD_NB_SHIFT)
#define BOARD_ID2VAR(_id)		(((_id) & BOARD_ID_VARIANT_MASK) >> \
					 BOARD_ID_VARIANT_SHIFT)
#define BOARD_ID2REV(_id)		(((_id) & BOARD_ID_REVISION_MASK) >> \
					 BOARD_ID_REVISION_SHIFT)
#define BOARD_ID2BOM(_id)		((_id) & BOARD_ID_BOM_MASK)

33
34
#if defined(IMAGE_BL2)
#define MAP_SEC_SYSRAM	MAP_REGION_FLAT(STM32MP_SYSRAM_BASE, \
35
					STM32MP_SYSRAM_SIZE, \
36
37
38
39
					MT_MEMORY | \
					MT_RW | \
					MT_SECURE | \
					MT_EXECUTE_NEVER)
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#elif defined(IMAGE_BL32)
#define MAP_SEC_SYSRAM	MAP_REGION_FLAT(STM32MP_SEC_SYSRAM_BASE, \
					STM32MP_SEC_SYSRAM_SIZE, \
					MT_MEMORY | \
					MT_RW | \
					MT_SECURE | \
					MT_EXECUTE_NEVER)

/* Non-secure SYSRAM is used a uncached memory for SCMI message transfer */
#define MAP_NS_SYSRAM	MAP_REGION_FLAT(STM32MP_NS_SYSRAM_BASE, \
					STM32MP_NS_SYSRAM_SIZE, \
					MT_DEVICE | \
					MT_RW | \
					MT_NS | \
					MT_EXECUTE_NEVER)
#endif
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

#define MAP_DEVICE1	MAP_REGION_FLAT(STM32MP1_DEVICE1_BASE, \
					STM32MP1_DEVICE1_SIZE, \
					MT_DEVICE | \
					MT_RW | \
					MT_SECURE | \
					MT_EXECUTE_NEVER)

#define MAP_DEVICE2	MAP_REGION_FLAT(STM32MP1_DEVICE2_BASE, \
					STM32MP1_DEVICE2_SIZE, \
					MT_DEVICE | \
					MT_RW | \
					MT_SECURE | \
					MT_EXECUTE_NEVER)

#if defined(IMAGE_BL2)
static const mmap_region_t stm32mp1_mmap[] = {
73
	MAP_SEC_SYSRAM,
74
75
76
77
78
79
80
	MAP_DEVICE1,
	MAP_DEVICE2,
	{0}
};
#endif
#if defined(IMAGE_BL32)
static const mmap_region_t stm32mp1_mmap[] = {
81
82
	MAP_SEC_SYSRAM,
	MAP_NS_SYSRAM,
83
84
85
86
87
88
89
90
91
92
93
94
95
	MAP_DEVICE1,
	MAP_DEVICE2,
	{0}
};
#endif

void configure_mmu(void)
{
	mmap_add(stm32mp1_mmap);
	init_xlat_tables();

	enable_mmu_svc_mon(0);
}
96

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
uintptr_t stm32_get_gpio_bank_base(unsigned int bank)
{
	if (bank == GPIO_BANK_Z) {
		return GPIOZ_BASE;
	}

	assert(GPIO_BANK_A == 0 && bank <= GPIO_BANK_K);

	return GPIOA_BASE + (bank * GPIO_BANK_OFFSET);
}

uint32_t stm32_get_gpio_bank_offset(unsigned int bank)
{
	if (bank == GPIO_BANK_Z) {
		return 0;
	}

	assert(GPIO_BANK_A == 0 && bank <= GPIO_BANK_K);

	return bank * GPIO_BANK_OFFSET;
}

119
120
121
122
123
124
125
126
127
128
unsigned long stm32_get_gpio_bank_clock(unsigned int bank)
{
	if (bank == GPIO_BANK_Z) {
		return GPIOZ;
	}

	assert(GPIO_BANK_A == 0 && bank <= GPIO_BANK_K);

	return GPIOA + (bank - GPIO_BANK_A);
}
Yann Gautier's avatar
Yann Gautier committed
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
int stm32_get_gpio_bank_pinctrl_node(void *fdt, unsigned int bank)
{
	switch (bank) {
	case GPIO_BANK_A:
	case GPIO_BANK_B:
	case GPIO_BANK_C:
	case GPIO_BANK_D:
	case GPIO_BANK_E:
	case GPIO_BANK_F:
	case GPIO_BANK_G:
	case GPIO_BANK_H:
	case GPIO_BANK_I:
	case GPIO_BANK_J:
	case GPIO_BANK_K:
		return fdt_path_offset(fdt, "/soc/pin-controller");
	case GPIO_BANK_Z:
		return fdt_path_offset(fdt, "/soc/pin-controller-z");
	default:
		panic();
	}
}

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
static int get_part_number(uint32_t *part_nb)
{
	uint32_t part_number;
	uint32_t dev_id;

	if (stm32mp1_dbgmcu_get_chip_dev_id(&dev_id) < 0) {
		return -1;
	}

	if (bsec_shadow_read_otp(&part_number, PART_NUMBER_OTP) != BSEC_OK) {
		ERROR("BSEC: PART_NUMBER_OTP Error\n");
		return -1;
	}

	part_number = (part_number & PART_NUMBER_OTP_PART_MASK) >>
		PART_NUMBER_OTP_PART_SHIFT;

	*part_nb = part_number | (dev_id << 16);

	return 0;
}

static int get_cpu_package(uint32_t *cpu_package)
{
	uint32_t package;

	if (bsec_shadow_read_otp(&package, PACKAGE_OTP) != BSEC_OK) {
		ERROR("BSEC: PACKAGE_OTP Error\n");
		return -1;
	}

	*cpu_package = (package & PACKAGE_OTP_PKG_MASK) >>
		PACKAGE_OTP_PKG_SHIFT;

	return 0;
}

void stm32mp_print_cpuinfo(void)
{
	const char *cpu_s, *cpu_r, *pkg;
	uint32_t part_number;
	uint32_t cpu_package;
	uint32_t chip_dev_id;
	int ret;

	/* MPUs Part Numbers */
	ret = get_part_number(&part_number);
	if (ret < 0) {
		WARN("Cannot get part number\n");
		return;
	}

	switch (part_number) {
	case STM32MP157C_PART_NB:
		cpu_s = "157C";
		break;
	case STM32MP157A_PART_NB:
		cpu_s = "157A";
		break;
	case STM32MP153C_PART_NB:
		cpu_s = "153C";
		break;
	case STM32MP153A_PART_NB:
		cpu_s = "153A";
		break;
	case STM32MP151C_PART_NB:
		cpu_s = "151C";
		break;
	case STM32MP151A_PART_NB:
		cpu_s = "151A";
		break;
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
	case STM32MP157F_PART_NB:
		cpu_s = "157F";
		break;
	case STM32MP157D_PART_NB:
		cpu_s = "157D";
		break;
	case STM32MP153F_PART_NB:
		cpu_s = "153F";
		break;
	case STM32MP153D_PART_NB:
		cpu_s = "153D";
		break;
	case STM32MP151F_PART_NB:
		cpu_s = "151F";
		break;
	case STM32MP151D_PART_NB:
		cpu_s = "151D";
		break;
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
	default:
		cpu_s = "????";
		break;
	}

	/* Package */
	ret = get_cpu_package(&cpu_package);
	if (ret < 0) {
		WARN("Cannot get CPU package\n");
		return;
	}

	switch (cpu_package) {
	case PKG_AA_LFBGA448:
		pkg = "AA";
		break;
	case PKG_AB_LFBGA354:
		pkg = "AB";
		break;
	case PKG_AC_TFBGA361:
		pkg = "AC";
		break;
	case PKG_AD_TFBGA257:
		pkg = "AD";
		break;
	default:
		pkg = "??";
		break;
	}

	/* REVISION */
	ret = stm32mp1_dbgmcu_get_chip_version(&chip_dev_id);
	if (ret < 0) {
		WARN("Cannot get CPU version\n");
		return;
	}

	switch (chip_dev_id) {
	case STM32MP1_REV_B:
		cpu_r = "B";
		break;
282
283
284
	case STM32MP1_REV_Z:
		cpu_r = "Z";
		break;
285
286
287
288
289
290
291
292
	default:
		cpu_r = "?";
		break;
	}

	NOTICE("CPU: STM32MP%s%s Rev.%s\n", cpu_s, pkg, cpu_r);
}

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
void stm32mp_print_boardinfo(void)
{
	uint32_t board_id;
	uint32_t board_otp;
	int bsec_node, bsec_board_id_node;
	void *fdt;
	const fdt32_t *cuint;

	if (fdt_get_address(&fdt) == 0) {
		panic();
	}

	bsec_node = fdt_node_offset_by_compatible(fdt, -1, DT_BSEC_COMPAT);
	if (bsec_node < 0) {
		return;
	}

	bsec_board_id_node = fdt_subnode_offset(fdt, bsec_node, "board_id");
	if (bsec_board_id_node <= 0) {
		return;
	}

	cuint = fdt_getprop(fdt, bsec_board_id_node, "reg", NULL);
	if (cuint == NULL) {
		panic();
	}

	board_otp = fdt32_to_cpu(*cuint) / sizeof(uint32_t);

	if (bsec_shadow_read_otp(&board_id, board_otp) != BSEC_OK) {
		ERROR("BSEC: PART_NUMBER_OTP Error\n");
		return;
	}

	if (board_id != 0U) {
		char rev[2];

		rev[0] = BOARD_ID2REV(board_id) - 1 + 'A';
		rev[1] = '\0';
		NOTICE("Board: MB%04x Var%d Rev.%s-%02d\n",
		       BOARD_ID2NB(board_id),
		       BOARD_ID2VAR(board_id),
		       rev,
		       BOARD_ID2BOM(board_id));
	}
}

340
341
342
343
344
345
346
347
348
349
350
351
352
/* Return true when SoC provides a single Cortex-A7 core, and false otherwise */
bool stm32mp_is_single_core(void)
{
	uint32_t part_number;

	if (get_part_number(&part_number) < 0) {
		ERROR("Invalid part number, assume single core chip");
		return true;
	}

	switch (part_number) {
	case STM32MP151A_PART_NB:
	case STM32MP151C_PART_NB:
353
354
355
	case STM32MP151D_PART_NB:
	case STM32MP151F_PART_NB:
		return true;
356
357

	default:
358
		return false;
359
360
361
	}
}

362
363
364
365
366
367
368
369
370
371
372
373
374
/* Return true when device is in closed state */
bool stm32mp_is_closed_device(void)
{
	uint32_t value;

	if ((bsec_shadow_register(DATA0_OTP) != BSEC_OK) ||
	    (bsec_read_otp(&value, DATA0_OTP) != BSEC_OK)) {
		return true;
	}

	return (value & DATA0_OTP_SECURED) == DATA0_OTP_SECURED;
}

Yann Gautier's avatar
Yann Gautier committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
uint32_t stm32_iwdg_get_instance(uintptr_t base)
{
	switch (base) {
	case IWDG1_BASE:
		return IWDG1_INST;
	case IWDG2_BASE:
		return IWDG2_INST;
	default:
		panic();
	}
}

uint32_t stm32_iwdg_get_otp_config(uint32_t iwdg_inst)
{
	uint32_t iwdg_cfg = 0U;
	uint32_t otp_value;

#if defined(IMAGE_BL2)
	if (bsec_shadow_register(HW2_OTP) != BSEC_OK) {
		panic();
	}
#endif

	if (bsec_read_otp(&otp_value, HW2_OTP) != BSEC_OK) {
		panic();
	}

	if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_HW_POS)) != 0U) {
		iwdg_cfg |= IWDG_HW_ENABLED;
	}

	if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS)) != 0U) {
		iwdg_cfg |= IWDG_DISABLE_ON_STOP;
	}

	if ((otp_value & BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS)) != 0U) {
		iwdg_cfg |= IWDG_DISABLE_ON_STANDBY;
	}

	return iwdg_cfg;
}

#if defined(IMAGE_BL2)
uint32_t stm32_iwdg_shadow_update(uint32_t iwdg_inst, uint32_t flags)
{
	uint32_t otp;
	uint32_t result;

	if (bsec_shadow_read_otp(&otp, HW2_OTP) != BSEC_OK) {
		panic();
	}

	if ((flags & IWDG_DISABLE_ON_STOP) != 0U) {
		otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS);
	}

	if ((flags & IWDG_DISABLE_ON_STANDBY) != 0U) {
		otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS);
	}

	result = bsec_write_otp(otp, HW2_OTP);
	if (result != BSEC_OK) {
		return result;
	}

	/* Sticky lock OTP_IWDG (read and write) */
	if (!bsec_write_sr_lock(HW2_OTP, 1U) ||
	    !bsec_write_sw_lock(HW2_OTP, 1U)) {
		return BSEC_LOCK_FAIL;
	}

	return BSEC_OK;
}
#endif
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

/* Get the non-secure DDR size */
uint32_t stm32mp_get_ddr_ns_size(void)
{
	static uint32_t ddr_ns_size;
	uint32_t ddr_size;

	if (ddr_ns_size != 0U) {
		return ddr_ns_size;
	}

	ddr_size = dt_get_ddr_size();
	if ((ddr_size <= (STM32MP_DDR_S_SIZE + STM32MP_DDR_SHMEM_SIZE)) ||
	    (ddr_size > STM32MP_DDR_MAX_SIZE)) {
		panic();
	}

	ddr_ns_size = ddr_size - (STM32MP_DDR_S_SIZE + STM32MP_DDR_SHMEM_SIZE);

	return ddr_ns_size;
}