plat_psci_handlers.c 14 KB
Newer Older
1
/*
2
 * Copyright (c) 2019-2020, NVIDIA CORPORATION. All rights reserved.
3
4
5
6
7
8
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <arch.h>
#include <assert.h>
9
10
11
12
#include <stdbool.h>
#include <string.h>

#include <arch_helpers.h>
13
#include <bpmp_ipc.h>
14
15
#include <common/bl_common.h>
#include <common/debug.h>
16
#include <context.h>
17
#include <drivers/delay_timer.h>
18
#include <denver.h>
19
20
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/psci/psci.h>
21
#include <mce.h>
22
#include <mce_private.h>
23
#include <memctrl_v2.h>
24
#include <plat/common/platform.h>
25
#include <se.h>
26
#include <smmu.h>
Tejal Kudav's avatar
Tejal Kudav committed
27
#include <t194_nvg.h>
28
#include <tegra194_private.h>
29
30
#include <tegra_platform.h>
#include <tegra_private.h>
31

32
33
extern uint32_t __tegra194_cpu_reset_handler_data,
		__tegra194_cpu_reset_handler_end;
34
35

/* TZDRAM offset for saving SMMU context */
36
#define TEGRA194_SMMU_CTX_OFFSET	16U
37
38

/* state id mask */
39
#define TEGRA194_STATE_ID_MASK		0xFU
40
/* constants to get power state's wake time */
41
42
#define TEGRA194_WAKE_TIME_MASK		0x0FFFFFF0U
#define TEGRA194_WAKE_TIME_SHIFT	4U
43
/* default core wake mask for CPU_SUSPEND */
44
#define TEGRA194_CORE_WAKE_MASK		0x180cU
45

46
47
48
static struct t19x_psci_percpu_data {
	uint32_t wake_time;
} __aligned(CACHE_WRITEBACK_GRANULE) t19x_percpu_data[PLATFORM_CORE_COUNT];
49

50
int32_t tegra_soc_validate_power_state(uint32_t power_state,
51
52
					psci_power_state_t *req_state)
{
53
	uint8_t state_id = (uint8_t)psci_get_pstate_id(power_state) &
54
			   TEGRA194_STATE_ID_MASK;
55
56
	uint32_t cpu = plat_my_core_pos();
	int32_t ret = PSCI_E_SUCCESS;
57
58

	/* save the core wake time (in TSC ticks)*/
59
60
	t19x_percpu_data[cpu].wake_time = (power_state & TEGRA194_WAKE_TIME_MASK)
			<< TEGRA194_WAKE_TIME_SHIFT;
61
62

	/*
63
64
65
66
	 * Clean t19x_percpu_data[cpu] to DRAM. This needs to be done to ensure
	 * that the correct value is read in tegra_soc_pwr_domain_suspend(),
	 * which is called with caches disabled. It is possible to read a stale
	 * value from DRAM in that function, because the L2 cache is not flushed
67
68
	 * unless the cluster is entering CC6/CC7.
	 */
69
70
	clean_dcache_range((uint64_t)&t19x_percpu_data[cpu],
			sizeof(t19x_percpu_data[cpu]));
71
72
73
74

	/* Sanity check the requested state id */
	switch (state_id) {
	case PSTATE_ID_CORE_IDLE:
75
76
77
78
79
80

		/* Core idle request */
		req_state->pwr_domain_state[MPIDR_AFFLVL0] = PLAT_MAX_RET_STATE;
		req_state->pwr_domain_state[MPIDR_AFFLVL1] = PSCI_LOCAL_STATE_RUN;
		break;

81
82
	default:
		ERROR("%s: unsupported state id (%d)\n", __func__, state_id);
83
84
		ret = PSCI_E_INVALID_PARAMS;
		break;
85
86
	}

87
	return ret;
88
89
}

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
int32_t tegra_soc_cpu_standby(plat_local_state_t cpu_state)
{
	uint32_t cpu = plat_my_core_pos();
	mce_cstate_info_t cstate_info = { 0 };

	/* Program default wake mask */
	cstate_info.wake_mask = TEGRA194_CORE_WAKE_MASK;
	cstate_info.update_wake_mask = 1;
	mce_update_cstate_info(&cstate_info);

	/* Enter CPU idle */
	(void)mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
				  (uint64_t)TEGRA_NVG_CORE_C6,
				  t19x_percpu_data[cpu].wake_time,
				  0U);

	return PSCI_E_SUCCESS;
}

109
int32_t tegra_soc_pwr_domain_suspend(const psci_power_state_t *target_state)
110
111
{
	const plat_local_state_t *pwr_domain_state;
112
	uint8_t stateid_afflvl2;
113
	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
114
	uint64_t mc_ctx_base;
115
	uint32_t val;
116
	mce_cstate_info_t sc7_cstate_info = {
117
		.cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6,
118
		.ccplex = (uint32_t)TEGRA_NVG_CG_CG7,
119
120
121
		.system = (uint32_t)TEGRA_NVG_SYSTEM_SC7,
		.system_state_force = 1U,
		.update_wake_mask = 1U,
122
123
	};
	int32_t ret = 0;
124
125
126
127

	/* get the state ID */
	pwr_domain_state = target_state->pwr_domain_state;
	stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
128
		TEGRA194_STATE_ID_MASK;
129

130
	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
131
132
133

		/* save 'Secure Boot' Processor Feature Config Register */
		val = mmio_read_32(TEGRA_MISC_BASE + MISCREG_PFCFG);
134
		mmio_write_32(TEGRA_SCRATCH_BASE + SCRATCH_SECURE_BOOTP_FCFG, val);
135

136
137
138
139
		/* save MC context */
		mc_ctx_base = params_from_bl2->tzdram_base +
				tegra194_get_mc_ctx_offset();
		tegra_mc_save_context((uintptr_t)mc_ctx_base);
140

141
142
143
144
145
146
147
148
149
		/*
		 * Suspend SE, RNG1 and PKA1 only on silcon and fpga,
		 * since VDK does not support atomic se ctx save
		 */
		if (tegra_platform_is_silicon() || tegra_platform_is_fpga()) {
			ret = tegra_se_suspend();
			assert(ret == 0);
		}

150
151
		/* Prepare for system suspend */
		mce_update_cstate_info(&sc7_cstate_info);
152

153
154
155
156
		do {
			val = (uint32_t)mce_command_handler(
					(uint32_t)MCE_CMD_IS_SC7_ALLOWED,
					(uint32_t)TEGRA_NVG_CORE_C7,
157
158
					MCE_CORE_SLEEP_TIME_INFINITE,
					0U);
159
160
161
162
163
164
165
166
167
168
169
170
		} while (val == 0U);

		/* Instruct the MCE to enter system suspend state */
		ret = mce_command_handler(
				(uint64_t)MCE_CMD_ENTER_CSTATE,
				(uint64_t)TEGRA_NVG_CORE_C7,
				MCE_CORE_SLEEP_TIME_INFINITE,
				0U);
		assert(ret == 0);

		/* set system suspend state for house-keeping */
		tegra194_set_system_suspend_entry();
171
172
173
174
175
176
	}

	return PSCI_E_SUCCESS;
}

/*******************************************************************************
177
 * Helper function to check if this is the last ON CPU in the cluster
178
 ******************************************************************************/
179
180
static bool tegra_last_on_cpu_in_cluster(const plat_local_state_t *states,
			uint32_t ncpu)
181
{
182
183
	plat_local_state_t target;
	bool last_on_cpu = true;
184
	uint32_t num_cpus = ncpu, pos = 0;
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
	do {
		target = states[pos];
		if (target != PLAT_MAX_OFF_STATE) {
			last_on_cpu = false;
		}
		--num_cpus;
		pos++;
	} while (num_cpus != 0U);

	return last_on_cpu;
}

/*******************************************************************************
 * Helper function to get target power state for the cluster
 ******************************************************************************/
static plat_local_state_t tegra_get_afflvl1_pwr_state(const plat_local_state_t *states,
			uint32_t ncpu)
{
	uint32_t core_pos = (uint32_t)read_mpidr() & (uint32_t)MPIDR_CPU_MASK;
	plat_local_state_t target = states[core_pos];
	mce_cstate_info_t cstate_info = { 0 };
207
208

	/* CPU off */
209
	if (target == PLAT_MAX_OFF_STATE) {
210
211

		/* Enable cluster powerdn from last CPU in the cluster */
212
		if (tegra_last_on_cpu_in_cluster(states, ncpu)) {
213

214
215
			/* Enable CC6 state and turn off wake mask */
			cstate_info.cluster = (uint32_t)TEGRA_NVG_CLUSTER_CC6;
216
217
			cstate_info.ccplex = (uint32_t)TEGRA_NVG_CG_CG7;
			cstate_info.system_state_force = 1;
218
219
			cstate_info.update_wake_mask = 1U;
			mce_update_cstate_info(&cstate_info);
220

221
		} else {
222

223
			/* Turn off wake_mask */
224
225
			cstate_info.update_wake_mask = 1U;
			mce_update_cstate_info(&cstate_info);
226
			target = PSCI_LOCAL_STATE_RUN;
227
228
229
		}
	}

230
231
232
233
234
235
236
237
238
239
240
241
242
243
	return target;
}

/*******************************************************************************
 * Platform handler to calculate the proper target power level at the
 * specified affinity level
 ******************************************************************************/
plat_local_state_t tegra_soc_get_target_pwr_state(uint32_t lvl,
					     const plat_local_state_t *states,
					     uint32_t ncpu)
{
	plat_local_state_t target = PSCI_LOCAL_STATE_RUN;
	uint32_t cpu = plat_my_core_pos();

244
	/* System Suspend */
245
246
247
248
249
250
251
	if ((lvl == (uint32_t)MPIDR_AFFLVL2) && (states[cpu] == PSTATE_ID_SOC_POWERDN)) {
		target = PSTATE_ID_SOC_POWERDN;
	}

	/* CPU off, CPU suspend */
	if (lvl == (uint32_t)MPIDR_AFFLVL1) {
		target = tegra_get_afflvl1_pwr_state(states, ncpu);
252
	}
253

254
255
	/* target cluster/system state */
	return target;
256
257
}

258
int32_t tegra_soc_pwr_domain_power_down_wfi(const psci_power_state_t *target_state)
259
260
261
262
{
	const plat_local_state_t *pwr_domain_state =
		target_state->pwr_domain_state;
	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
263
	uint8_t stateid_afflvl2 = pwr_domain_state[PLAT_MAX_PWR_LVL] &
264
		TEGRA194_STATE_ID_MASK;
265
	uint64_t src_len_in_bytes = (uintptr_t)&__BL31_END__ - (uintptr_t)BL31_BASE;
266
	uint64_t val;
267
	int32_t ret = PSCI_E_SUCCESS;
268
269

	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
270
271
272
273
274
275
276
277
		val = params_from_bl2->tzdram_base +
		      tegra194_get_cpu_reset_handler_size();

		/* initialise communication channel with BPMP */
		ret = tegra_bpmp_ipc_init();
		assert(ret == 0);

		/* Enable SE clock before SE context save */
278
		ret = tegra_bpmp_ipc_enable_clock(TEGRA194_CLK_SE);
279
280
281
282
283
284
285
286
287
288
289
290
291
292
		assert(ret == 0);

		/*
		 * It is very unlikely that the BL31 image would be
		 * bigger than 2^32 bytes
		 */
		assert(src_len_in_bytes < UINT32_MAX);

		if (tegra_se_calculate_save_sha256(BL31_BASE,
					(uint32_t)src_len_in_bytes) != 0) {
			ERROR("Hash calculation failed. Reboot\n");
			(void)tegra_soc_prepare_system_reset();
		}

293
294
295
296
297
298
		/*
		 * The TZRAM loses power when we enter system suspend. To
		 * allow graceful exit from system suspend, we need to copy
		 * BL3-1 over to TZDRAM.
		 */
		val = params_from_bl2->tzdram_base +
299
		      tegra194_get_cpu_reset_handler_size();
300
		memcpy((void *)(uintptr_t)val, (void *)(uintptr_t)BL31_BASE,
301
302
303
		       src_len_in_bytes);

		/* Disable SE clock after SE context save */
304
		ret = tegra_bpmp_ipc_disable_clock(TEGRA194_CLK_SE);
305
		assert(ret == 0);
306
307
	}

308
	return ret;
309
310
}

311
312
313
314
315
int32_t tegra_soc_pwr_domain_suspend_pwrdown_early(const psci_power_state_t *target_state)
{
	return PSCI_E_NOT_SUPPORTED;
}

316
int32_t tegra_soc_pwr_domain_on(u_register_t mpidr)
317
{
318
319
	uint64_t target_cpu = mpidr & MPIDR_CPU_MASK;
	uint64_t target_cluster = (mpidr & MPIDR_CLUSTER_MASK) >>
320
			MPIDR_AFFINITY_BITS;
321
	int32_t ret = 0;
322

323
	if (target_cluster > ((uint32_t)PLATFORM_CLUSTER_COUNT - 1U)) {
324
325
326
327
328
		ERROR("%s: unsupported CPU (0x%lx)\n", __func__ , mpidr);
		return PSCI_E_NOT_PRESENT;
	}

	/* construct the target CPU # */
329
	target_cpu += (target_cluster << 1U);
330

331
332
333
334
	ret = mce_command_handler((uint64_t)MCE_CMD_ONLINE_CORE, target_cpu, 0U, 0U);
	if (ret < 0) {
		return PSCI_E_DENIED;
	}
335
336
337
338

	return PSCI_E_SUCCESS;
}

339
int32_t tegra_soc_pwr_domain_on_finish(const psci_power_state_t *target_state)
340
{
341
342
	const plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
	uint8_t enable_ccplex_lock_step = params_from_bl2->enable_ccplex_lock_step;
343
	uint8_t stateid_afflvl2 = target_state->pwr_domain_state[PLAT_MAX_PWR_LVL];
344
345
	cpu_context_t *ctx = cm_get_context(NON_SECURE);
	uint64_t actlr_elx;
346
347
348
349
350
351
352
353

	/*
	 * Reset power state info for CPUs when onlining, we set
	 * deepest power when offlining a core but that may not be
	 * requested by non-secure sw which controls idle states. It
	 * will re-init this info from non-secure software when the
	 * core come online.
	 */
354
355
356
357
	actlr_elx = read_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1));
	actlr_elx &= ~DENVER_CPU_PMSTATE_MASK;
	actlr_elx |= DENVER_CPU_PMSTATE_C1;
	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
358
359
360
361
362
363

	/*
	 * Check if we are exiting from deep sleep and restore SE
	 * context if we are.
	 */
	if (stateid_afflvl2 == PSTATE_ID_SOC_POWERDN) {
364

365
#if ENABLE_STRICT_CHECKING_MODE
366
367
368
369
370
		/*
		 * Enable strict checking after programming the GSC for
		 * enabling TZSRAM and TZDRAM
		 */
		mce_enable_strict_checking();
371
#endif
372

373
		/* Init SMMU */
374
375
		tegra_smmu_init();

376
377
378
		/* Resume SE, RNG1 and PKA1 */
		tegra_se_resume();

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
		/*
		 * Program XUSB STREAMIDs
		 * ======================
		 * T19x XUSB has support for XUSB virtualization. It will
		 * have one physical function (PF) and four Virtual functions
		 * (VF)
		 *
		 * There were below two SIDs for XUSB until T186.
		 * 1) #define TEGRA_SID_XUSB_HOST    0x1bU
		 * 2) #define TEGRA_SID_XUSB_DEV    0x1cU
		 *
		 * We have below four new SIDs added for VF(s)
		 * 3) #define TEGRA_SID_XUSB_VF0    0x5dU
		 * 4) #define TEGRA_SID_XUSB_VF1    0x5eU
		 * 5) #define TEGRA_SID_XUSB_VF2    0x5fU
		 * 6) #define TEGRA_SID_XUSB_VF3    0x60U
		 *
		 * When virtualization is enabled then we have to disable SID
		 * override and program above SIDs in below newly added SID
		 * registers in XUSB PADCTL MMIO space. These registers are
		 * TZ protected and so need to be done in ATF.
		 *
		 * a) #define XUSB_PADCTL_HOST_AXI_STREAMID_PF_0 (0x136cU)
		 * b) #define XUSB_PADCTL_DEV_AXI_STREAMID_PF_0  (0x139cU)
		 * c) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_0 (0x1370U)
		 * d) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_1 (0x1374U)
		 * e) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_2 (0x1378U)
		 * f) #define XUSB_PADCTL_HOST_AXI_STREAMID_VF_3 (0x137cU)
		 *
		 * This change disables SID override and programs XUSB SIDs
		 * in above registers to support both virtualization and
		 * non-virtualization platforms
		 */
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
		if (tegra_platform_is_silicon() || tegra_platform_is_fpga()) {

			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
				XUSB_PADCTL_HOST_AXI_STREAMID_PF_0, TEGRA_SID_XUSB_HOST);
			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
				XUSB_PADCTL_HOST_AXI_STREAMID_VF_0, TEGRA_SID_XUSB_VF0);
			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
				XUSB_PADCTL_HOST_AXI_STREAMID_VF_1, TEGRA_SID_XUSB_VF1);
			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
				XUSB_PADCTL_HOST_AXI_STREAMID_VF_2, TEGRA_SID_XUSB_VF2);
			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
				XUSB_PADCTL_HOST_AXI_STREAMID_VF_3, TEGRA_SID_XUSB_VF3);
			mmio_write_32(TEGRA_XUSB_PADCTL_BASE +
				XUSB_PADCTL_DEV_AXI_STREAMID_PF_0, TEGRA_SID_XUSB_DEV);
		}
427
	}
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
	/*
	 * Enable dual execution optimized translations for all ELx.
	 */
	if (enable_ccplex_lock_step != 0U) {
		actlr_elx = read_actlr_el3();
		actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL3;
		write_actlr_el3(actlr_elx);

		actlr_elx = read_actlr_el2();
		actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL2;
		write_actlr_el2(actlr_elx);

		actlr_elx = read_actlr_el1();
		actlr_elx |= DENVER_CPU_ENABLE_DUAL_EXEC_EL1;
		write_actlr_el1(actlr_elx);
444
445
446
447
448
	}

	return PSCI_E_SUCCESS;
}

449
int32_t tegra_soc_pwr_domain_off(const psci_power_state_t *target_state)
450
{
451
	uint64_t impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
452
	int32_t ret = 0;
453

454
455
	(void)target_state;

456
	/* Disable Denver's DCO operations */
457
	if (impl == DENVER_IMPL) {
458
		denver_disable_dco();
459
	}
460
461

	/* Turn off CPU */
462
463
	ret = mce_command_handler((uint64_t)MCE_CMD_ENTER_CSTATE,
			(uint64_t)TEGRA_NVG_CORE_C7, MCE_CORE_SLEEP_TIME_INFINITE, 0U);
464
	assert(ret == 0);
465
466
467
468
469
470
471

	return PSCI_E_SUCCESS;
}

__dead2 void tegra_soc_prepare_system_off(void)
{
	/* System power off */
472
	mce_system_shutdown();
473
474
475
476
477
478
479
480
481

	wfi();

	/* wait for the system to power down */
	for (;;) {
		;
	}
}

482
int32_t tegra_soc_prepare_system_reset(void)
483
{
484
485
486
	/* System reboot */
	mce_system_reboot();

487
488
	return PSCI_E_SUCCESS;
}