user-guide.md 63.7 KB
Newer Older
1
2
3
4
5
ARM Trusted Firmware User Guide
===============================

Contents :

6
7
8
1.  [Introduction](#1--introduction)
2.  [Host machine requirements](#2--host-machine-requirements)
3.  [Tools](#3--tools)
9
10
11
4.  [Getting the Trusted Firmware source code](#4--getting-the-trusted-firmware-source-code)
5.  [Building the Trusted Firmware](#5--building-the-trusted-firmware)
6.  [Building the rest of the software stack](#6--building-the-rest-of-the-software-stack)
12
13
14
15
7.  [EL3 payloads alternative boot flow](#7--el3-payloads-alternative-boot-flow)
8.  [Preparing the images to run on FVP](#8--preparing-the-images-to-run-on-fvp)
9.  [Running the software on FVP](#9--running-the-software-on-fvp)
10. [Running the software on Juno](#10--running-the-software-on-juno)
16
11. [Changes required for booting Linux on FVP in GICv3 mode](#11--changes-required-for-booting-linux-on-fvp-in-gicv3-mode)
17
18
19
20


1.  Introduction
----------------
21

22
This document describes how to build ARM Trusted Firmware and run it with a
23
24
25
26
tested set of other software components using defined configurations on the Juno
ARM development platform and ARM Fixed Virtual Platform (FVP) models. It is
possible to use other software components, configurations and platforms but that
is outside the scope of this document.
27

28
This document should be used in conjunction with the [Firmware Design] and the
29
[Instructions for using the Linaro software deliverables][Linaro SW Instructions].
30
31


32
33
2.  Host machine requirements
-----------------------------
34

35
The minimum recommended machine specification for building the software and
36
37
38
running the FVP models is a dual-core processor running at 2GHz with 12GB of
RAM.  For best performance, use a machine with a quad-core processor running at
2.6GHz with 16GB of RAM.
39

40
41
42
The software has been tested on Ubuntu 14.04 LTS (64-bit). Packages used for
building the software were installed from that distribution unless otherwise
specified.
43

44
45
3.  Tools
---------
46

47
48
49
In addition to the mandatory prerequisite tools listed in the [instructions for
using the Linaro software deliverables][Linaro SW Instructions], the following
optional tools may be needed:
50

51
52
*   `device-tree-compiler` package if you need to rebuild the Flattened Device
    Tree (FDT) source files (`.dts` files) provided with this software.
53

54
*   For debugging, ARM [Development Studio 5 (DS-5)][DS-5] v5.22.
55
56


57
58
59
4.  Getting the Trusted Firmware source code
--------------------------------------------

60
61
62
63
64
The Trusted Firmware (TF) source code can be obtained as part of the standard
Linaro releases, which provide a full software stack, including TF, normal
world firmware, Linux kernel and device tree, file system as well as any
additional micro-controller firmware required by the platform. This TF version
is tested with the [Linaro 15.10 Release][Linaro Release Notes].
65

66
67
Note 1: Both the LSK kernel or the latest tracking kernel can be used with TF;
choose the one that best suits your needs.
68

69
70
71
72
73
Note 2: Currently to run the latest tracking kernel on FVP with GICv3 driver,
some modifications are required to UEFI. Refer
[here](#11--changes-required-for-booting-linux-on-fvp-in-gicv3-mode)
for more details.

74
75
76
77
78
The TF source code will then be in `arm-tf/`. This is the upstream git
repository cloned from GitHub. The revision checked out by the `repo` tool is
indicated by the manifest file. Depending on the manifest file you're using,
this might not be the latest upstream version. To synchronize your copy of the
repository and get the latest updates, use the following commands:
79
80
81
82

    # Change to the Trusted Firmware directory.
    cd arm-tf

83
    # Download the latest code from GitHub.
84
    git fetch github
85

86
87
    # Update your working copy to the latest master.
    # This command will create a local branch master that tracks the remote
88
    # branch master from GitHub.
89
    git checkout --track github/master
90
91


92
93
Alternatively, the TF source code can be separately cloned from the upstream
GitHub repository:
94

95
    git clone https://github.com/ARM-software/arm-trusted-firmware.git
96

97
98
99
100
101
102
103

5.  Building the Trusted Firmware
---------------------------------

To build the Trusted Firmware images, change to the root directory of the
Trusted Firmware source tree and follow these steps:

104
1.  Set the compiler path, specify a Non-trusted Firmware image (BL33) and
105
    a valid platform, and then build:
106

107
108
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- \
        BL33=<path-to>/<bl33_image>                                \
109
        make PLAT=<platform> all fip
110

111
112
113
    If `PLAT` is not specified, `fvp` is assumed by default. See the "Summary of
    build options" for more information on available build options.

114
115
    The BL33 image corresponds to the software that is executed after switching
    to the non-secure world. UEFI can be used as the BL33 image. Refer to the
116
    "Building the rest of the software stack" section below.
117

118
    The TSP (Test Secure Payload), corresponding to the BL32 image, is not
119
120
    compiled in by default. Refer to the "Building the Test Secure Payload"
    section below.
121

122
    By default this produces a release version of the build. To produce a debug
123
    version instead, refer to the "Debugging options" section below.
124

125
126
127
128
    The build process creates products in a `build` directory tree, building
    the objects and binaries for each boot loader stage in separate
    sub-directories.  The following boot loader binary files are created from
    the corresponding ELF files:
129

130
131
132
    *   `build/<platform>/<build-type>/bl1.bin`
    *   `build/<platform>/<build-type>/bl2.bin`
    *   `build/<platform>/<build-type>/bl31.bin`
133

134
    where `<platform>` is the name of the chosen platform and `<build-type>` is
135
    either `debug` or `release`. A Firmware Image Package (FIP) will be created
136
137
    as part of the build. It contains all boot loader images except for
    `bl1.bin`.
138

139
    *   `build/<platform>/<build-type>/fip.bin`
140

141
142
    For more information on FIPs, see the "Firmware Image Package" section in
    the [Firmware Design].
143

144
2.  (Optional) Some platforms may require a SCP_BL2 image to boot. This image can
145
    be included in the FIP when building the Trusted Firmware by specifying the
146
    `SCP_BL2` build option:
147

148
        SCP_BL2=<path-to>/<scp_bl2_image>
149

150
3.  Output binary files `bl1.bin` and `fip.bin` are both required to boot the
151
152
    system. How these files are used is platform specific. Refer to the
    platform documentation on how to use the firmware images.
153

154
4.  (Optional) Build products for a specific build variant can be removed using:
155

156
        make DEBUG=<D> PLAT=<platform> clean
157
158
159
160
161
162

    ... where `<D>` is `0` or `1`, as specified when building.

    The build tree can be removed completely using:

        make realclean
163

164
5.  (Optional) Path to binary for certain BL stages (BL2, BL31 and BL32) can be
165
166
    provided by specifying the BLx=<path-to>/<blx_image> where BLx is the BL stage.
    This will bypass the build of the BL component from source, but will include
167
    the specified binary in the final FIP image. Please note that BL32 will be
168
169
    included in the build, only if the `SPD` build option is specified.

170
171
    For example, specifying `BL2=<path-to>/<bl2_image>` in the build option,
    will skip compilation of BL2 source in trusted firmware, but include the BL2
172
173
    binary specified in the final FIP image.

174
175
176
177
178
179
180
181
182
### Summary of build options

ARM Trusted Firmware build system supports the following build options. Unless
mentioned otherwise, these options are expected to be specified at the build
command line and are not to be modified in any component makefiles. Note that
the build system doesn't track dependency for build options. Therefore, if any
of the build options are changed from a previous build, a clean build must be
performed.

183
184
#### Common build options

185
186
*   `SCP_BL2`: Path to SCP_BL2 image in the host file system. This image is optional.
    If a SCP_BL2 image is present then this option must be passed for the `fip`
187
    target.
188

189
*   `BL33`: Path to BL33 image in the host file system. This is mandatory for
190
191
192
193
194
195
196
    `fip` target in case the BL2 from ARM Trusted Firmware is used.

*   `BL2`: This is an optional build option which specifies the path to BL2
    image for the `fip` target. In this case, the BL2 in the ARM Trusted
    Firmware will not be built.

*   `BL31`:  This is an optional build option which specifies the path to
197
    BL31 image for the `fip` target. In this case, the BL31 in the ARM
198
199
200
    Trusted Firmware will not be built.

*   `BL32`:  This is an optional build option which specifies the path to
201
    BL32 image for the `fip` target. In this case, the BL32 in the ARM
202
    Trusted Firmware will not be built.
203

204
205
206
*   `FIP_NAME`: This is an optional build option which specifies the FIP
    filename for the `fip` target. Default is `fip.bin`.

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
*   `FWU_FIP_NAME`: This is an optional build option which specifies the FWU
    FIP filename for the `fwu_fip` target. Default is `fwu_fip.bin`.

*   `BL2U`:  This is an optional build option which specifies the path to
    BL2U image. In this case, the BL2U in the ARM Trusted Firmware will not
    be built.

*   `SCP_BL2U`: Path to SCP_BL2U image in the host file system. This image is
    optional. It is only needed if the platform makefile specifies that it
    is required in order to build the `fwu_fip` target.

*   `NS_BL2U`: Path to NS_BL2U image in the host file system. This image is
    optional. It is only needed if the platform makefile specifies that it
    is required in order to build the `fwu_fip` target.

222
223
*   `CROSS_COMPILE`: Prefix to toolchain binaries. Please refer to examples in
    this document for usage.
224
225

*   `DEBUG`: Chooses between a debug and release build. It can take either 0
226
    (release) or 1 (debug) as values. 0 is the default.
227

228
229
230
231
232
233
234
235
236
237
238
239
240
*   `LOG_LEVEL`: Chooses the log level, which controls the amount of console log
    output compiled into the build. This should be one of the following:

        0  (LOG_LEVEL_NONE)
        10 (LOG_LEVEL_NOTICE)
        20 (LOG_LEVEL_ERROR)
        30 (LOG_LEVEL_WARNING)
        40 (LOG_LEVEL_INFO)
        50 (LOG_LEVEL_VERBOSE)

    All log output up to and including the log level is compiled into the build.
    The default value is 40 in debug builds and 20 in release builds.

241
242
*   `NS_TIMER_SWITCH`: Enable save and restore for non-secure timer register
    contents upon world switch. It can take either 0 (don't save and restore) or
243
244
    1 (do save and restore). 0 is the default. An SPD may set this to 1 if it
    wants the timer registers to be saved and restored.
245

246
*   `PLAT`: Choose a platform to build ARM Trusted Firmware for. The chosen
247
248
    platform name must be subdirectory of any depth under `plat/`, and must
    contain a platform makefile named `platform.mk`.
249
250
251

*   `SPD`: Choose a Secure Payload Dispatcher component to be built into the
    Trusted Firmware. The value should be the path to the directory containing
252
253
    the SPD source, relative to `services/spd/`; the directory is expected to
    contain a makefile called `<spd-value>.mk`.
254
255

*   `V`: Verbose build. If assigned anything other than 0, the build commands
256
    are printed. Default is 0.
257

258
259
*   `ARM_GIC_ARCH`: Choice of ARM GIC architecture version used by the ARM
    Legacy GIC driver for implementing the platform GIC API. This API is used
260
    by the interrupt management framework. Default is 2 (that is, version 2.0).
261
    This build option is deprecated.
262

263
264
265
266
*   `ARM_CCI_PRODUCT_ID`: Choice of ARM CCI product used by the platform. This
    is used to determine the number of valid slave interfaces available in the
    ARM CCI driver. Default is 400 (that is, CCI-400).

267
*   `RESET_TO_BL31`: Enable BL31 entrypoint as the CPU reset vector instead
268
    of the BL1 entrypoint. It can take the value 0 (CPU reset to BL1
269
    entrypoint) or 1 (CPU reset to BL31 entrypoint).
270
271
    The default value is 0.

272
273
*   `CRASH_REPORTING`: A non-zero value enables a console dump of processor
    register state when an unexpected exception occurs during execution of
274
    BL31. This option defaults to the value of `DEBUG` - i.e. by default
275
    this is only enabled for a debug build of the firmware.
276

277
278
*   `ASM_ASSERTION`: This flag determines whether the assertion checks within
    assembly source files are enabled or not. This option defaults to the
279
    value of `DEBUG` - that is, by default this is only enabled for a debug
280
281
    build of the firmware.

282
283
284
285
*   `TSP_INIT_ASYNC`: Choose BL32 initialization method as asynchronous or
    synchronous, (see "Initializing a BL32 Image" section in [Firmware
    Design]). It can take the value 0 (BL32 is initialized using
    synchronous method) or 1 (BL32 is initialized using asynchronous method).
286
287
    Default is 0.

288
289
290
291
292
293
*   `USE_COHERENT_MEM`: This flag determines whether to include the coherent
    memory region in the BL memory map or not (see "Use of Coherent memory in
    Trusted Firmware" section in [Firmware Design]). It can take the value 1
    (Coherent memory region is included) or 0 (Coherent memory region is
    excluded). Default is 1.

294
295
296
297
298
299
300
*   `TSP_NS_INTR_ASYNC_PREEMPT`: A non zero value enables the interrupt
    routing model which routes non-secure interrupts asynchronously from TSP
    to EL3 causing immediate preemption of TSP. The EL3 is responsible
    for saving and restoring the TSP context in this routing model. The
    default routing model (when the value is 0) is to route non-secure
    interrupts to TSP allowing it to save its context and hand over
    synchronously to EL3 via an SMC.
301

302
303
*   `TRUSTED_BOARD_BOOT`: Boolean flag to include support for the Trusted Board
    Boot feature. When set to '1', BL1 and BL2 images include support to load
304
305
306
307
    and verify the certificates and images in a FIP, and BL1 includes support
    for the Firmware Update. The default value is '0'. Generation and inclusion
    of certificates in the FIP and FWU_FIP depends upon the value of the
    `GENERATE_COT` option.
308
309
310
311

*   `GENERATE_COT`: Boolean flag used to build and execute the `cert_create`
    tool to create certificates as per the Chain of Trust described in
    [Trusted Board Boot].  The build system then calls the `fip_create` tool to
312
    include the certificates in the FIP and FWU_FIP. Default value is '0'.
313

314
315
316
317
    Specify both `TRUSTED_BOARD_BOOT=1` and `GENERATE_COT=1` to include support
    for the Trusted Board Boot feature in the BL1 and BL2 images, to generate
    the corresponding certificates, and to include those certificates in the
    FIP and FWU_FIP.
318
319
320

    Note that if `TRUSTED_BOARD_BOOT=0` and `GENERATE_COT=1`, the BL1 and BL2
    images will not include support for Trusted Board Boot. The FIP will still
321
    include the corresponding certificates. This FIP can be used to verify the
322
323
324
    Chain of Trust on the host machine through other mechanisms.

    Note that if `TRUSTED_BOARD_BOOT=1` and `GENERATE_COT=0`, the BL1 and BL2
325
326
    images will include support for Trusted Board Boot, but the FIP and FWU_FIP
    will not include the corresponding certificates, causing a boot failure.
327
328
329
330
331

*   `CREATE_KEYS`: This option is used when `GENERATE_COT=1`. It tells the
    certificate generation tool to create new keys in case no valid keys are
    present or specified. Allowed options are '0' or '1'. Default is '1'.

332
333
334
335
336
337
338
*   `SAVE_KEYS`: This option is used when `GENERATE_COT=1`. It tells the
    certificate generation tool to save the keys used to establish the Chain of
    Trust. Allowed options are '0' or '1'. Default is '0' (do not save).

    Note: This option depends on 'CREATE_KEYS' to be enabled. If the keys
    already exist in disk, they will be overwritten without further notice.

339
*   `ROT_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
340
341
    file that contains the ROT private key in PEM format. If `SAVE_KEYS=1`, this
    file name will be used to save the key.
342
343
344

*   `TRUSTED_WORLD_KEY`: This option is used when `GENERATE_COT=1`. It
    specifies the file that contains the Trusted World private key in PEM
345
    format. If `SAVE_KEYS=1`, this file name will be used to save the key.
346
347
348

*   `NON_TRUSTED_WORLD_KEY`: This option is used when `GENERATE_COT=1`. It
    specifies the file that contains the Non-Trusted World private key in PEM
349
    format. If `SAVE_KEYS=1`, this file name will be used to save the key.
350

351
352
*   `SCP_BL2_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
    file that contains the SCP_BL2 private key in PEM format. If `SAVE_KEYS=1`,
353
    this file name will be used to save the key.
354
355

*   `BL31_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
356
    file that contains the BL31 private key in PEM format. If `SAVE_KEYS=1`,
357
    this file name will be used to save the key.
358
359

*   `BL32_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
360
    file that contains the BL32 private key in PEM format. If `SAVE_KEYS=1`,
361
    this file name will be used to save the key.
362
363

*   `BL33_KEY`: This option is used when `GENERATE_COT=1`. It specifies the
364
    file that contains the BL33 private key in PEM format. If `SAVE_KEYS=1`,
365
    this file name will be used to save the key.
366

367
368
*   `PROGRAMMABLE_RESET_ADDRESS`: This option indicates whether the reset
    vector address can be programmed or is fixed on the platform. It can take
369
370
371
    either 0 (fixed) or 1 (programmable). Default is 0. If the platform has a
    programmable reset address, it is expected that a CPU will start executing
    code directly at the right address, both on a cold and warm reset. In this
372
373
374
    case, there is no need to identify the entrypoint on boot and the boot path
    can be optimised. The `plat_get_my_entrypoint()` platform porting interface
    does not need to be implemented in this case.
375

376
377
378
379
380
381
382
383
*   `COLD_BOOT_SINGLE_CPU`: This option indicates whether the platform may
    release several CPUs out of reset. It can take either 0 (several CPUs may be
    brought up) or 1 (only one CPU will ever be brought up during cold reset).
    Default is 0. If the platform always brings up a single CPU, there is no
    need to distinguish between primary and secondary CPUs and the boot path can
    be optimised. The `plat_is_my_cpu_primary()` and
    `plat_secondary_cold_boot_setup()` platform porting interfaces do not need
    to be implemented in this case.
384

385
386
387
388
389
390
391
392
393
*   `PSCI_EXTENDED_STATE_ID`: As per PSCI1.0 Specification, there are 2 formats
    possible for the PSCI power-state parameter viz original and extended
    State-ID formats. This flag if set to 1, configures the generic PSCI layer
    to use the extended format. The default value of this flag is 0, which
    means by default the original power-state format is used by the PSCI
    implementation. This flag should be specified by the platform makefile
    and it governs the return value of PSCI_FEATURES API for CPU_SUSPEND
    smc function id.

394
395
396
397
*   `ERROR_DEPRECATED`: This option decides whether to treat the usage of
    deprecated platform APIs, helper functions or drivers within Trusted
    Firmware as error. It can take the value 1 (flag the use of deprecated
    APIs as error) or 0. The default is 0.
398

399
400
401
*   `SPIN_ON_BL1_EXIT`: This option introduces an infinite loop in BL1. It can
    take either 0 (no loop) or 1 (add a loop). 0 is the default. This loop stops
    execution in BL1 just before handing over to BL31. At this point, all
402
403
    firmware images have been loaded in memory, and the MMU and caches are
    turned off. Refer to the "Debugging options" section for more details.
404

405
406
407
408
*   `EL3_PAYLOAD_BASE`: This option enables booting an EL3 payload instead of
    the normal boot flow. It must specify the entry point address of the EL3
    payload. Please refer to the "Booting an EL3 payload" section for more
    details.
409
410
411
412
413
414

*   `PL011_GENERIC_UART`: Boolean option to indicate the PL011 driver that
    the underlying hardware is not a full PL011 UART but a minimally compliant
    generic UART, which is a subset of the PL011. The driver will not access
    any register that is not part of the SBSA generic UART specification.
    Default value is 0 (a full PL011 compliant UART is present).
415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
*   `CTX_INCLUDE_FPREGS`: Boolean option that, when set to 1, will cause the FP
    registers to be included when saving and restoring the CPU context. Default
    is 0.

*   `DISABLE_PEDANTIC`: When set to 1 it will disable the -pedantic option in
    the GCC command line. Default is 0.

*   `BUILD_STRING`: Input string for VERSION_STRING, which allows the TF build
    to be uniquely identified. Defaults to the current git commit id.

*   `VERSION_STRING`: String used in the log output for each TF image. Defaults
    to a string formed by concatenating the version number, build type and build
    string.

*   `BUILD_MESSAGE_TIMESTAMP`: String used to identify the time and date of the
    compilation of each build. It must be set to a C string (including quotes
    where applicable). Defaults to a string that contains the time and date of
    the compilation.

435
#### ARM development platform specific build options
436

437
*   `ARM_TSP_RAM_LOCATION`: location of the TSP binary. Options:
438
    -   `tsram` : Trusted SRAM (default option)
439
    -   `tdram` : Trusted DRAM (if available)
440
    -   `dram`  : Secure region in DRAM (configured by the TrustZone controller)
441

442
443
For a better understanding of these options, the ARM development platform memory
map is explained in the [Firmware Design].
444

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
*   `ARM_ROTPK_LOCATION`: used when `TRUSTED_BOARD_BOOT=1`. It specifies the
    location of the ROTPK hash returned by the function `plat_get_rotpk_info()`
    for ARM platforms. Depending on the selected option, the proper private key
    must be specified using the `ROT_KEY` option when building the Trusted
    Firmware. This private key will be used by the certificate generation tool
    to sign the BL2 and Trusted Key certificates. Available options for
    `ARM_ROTPK_LOCATION` are:

    -   `regs` : return the ROTPK hash stored in the Trusted root-key storage
        registers. The private key corresponding to this ROTPK hash is not
        currently available.
    -   `devel_rsa` : return a development public key hash embedded in the BL1
        and BL2 binaries. This hash has been obtained from the RSA public key
        `arm_rotpk_rsa.der`, located in `plat/arm/board/common/rotpk`. To use
        this option, `arm_rotprivk_rsa.pem` must be specified as `ROT_KEY` when
        creating the certificates.

462
463
464
465
466
467
468
469
*   `ARM_RECOM_STATE_ID_ENC`: The PSCI1.0 specification recommends an encoding
    for the construction of composite state-ID in the power-state parameter.
    The existing PSCI clients currently do not support this encoding of
    State-ID yet. Hence this flag is used to configure whether to use the
    recommended State-ID encoding or not. The default value of this flag is 0,
    in which case the platform is configured to expect NULL in the State-ID
    field of power-state parameter.

470
471
472
473
474
475
476
477
*   `ARM_DISABLE_TRUSTED_WDOG`: boolean option to disable the Trusted Watchdog.
    By default, ARM platforms use a watchdog to trigger a system reset in case
    an error is encountered during the boot process (for example, when an image
    could not be loaded or authenticated). The watchdog is enabled in the early
    platform setup hook at BL1 and disabled in the BL1 prepare exit hook. The
    Trusted Watchdog may be disabled at build time for testing or development
    purposes.

478
479
480
481
482
483
*   `ARM_CONFIG_CNTACR`: boolean option to unlock access to the CNTBase<N>
    frame registers by setting the CNTCTLBase.CNTACR<N> register bits. The
    frame number <N> is defined by 'PLAT_ARM_NSTIMER_FRAME_ID', which should
    match the frame used by the Non-Secure image (normally the Linux kernel).
    Default is true (access to the frame is allowed).

484
485
486
487
488
489
490
491
492
#### ARM CSS platform specific build options

*   `CSS_DETECT_PRE_1_7_0_SCP`: Boolean flag to detect SCP version
    incompatibility. Version 1.7.0 of the SCP firmware made a non-backwards
    compatible change to the MTL protocol, used for AP/SCP communication.
    Trusted Firmware no longer supports earlier SCP versions. If this option is
    set to 1 then Trusted Firmware will detect if an earlier version is in use.
    Default is 1.

493
494
495
496
497
498
499
500
501
502
#### ARM FVP platform specific build options

*   `FVP_USE_GIC_DRIVER`   : Selects the GIC driver to be built. Options:
    -    `FVP_GICV2`       : The GICv2 only driver is selected
    -    `FVP_GICV3`       : The GICv3 only driver is selected (default option)
    -    `FVP_GICV3_LEGACY`: The Legacy GICv3 driver is selected (deprecated).

    Note that if the FVP is configured for legacy VE memory map, then ARM
    Trusted Firmware must be compiled with GICv2 only driver using
    `FVP_USE_GIC_DRIVER=FVP_GICV2` build option.
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
### Creating a Firmware Image Package

FIPs are automatically created as part of the build instructions described in
the previous section. It is also possible to independently build the FIP
creation tool and FIPs if required. To do this, follow these steps:

Build the tool:

    make -C tools/fip_create

It is recommended to remove the build artifacts before rebuilding:

    make -C tools/fip_create clean

518
Create a Firmware package that contains existing BL2 and BL31 images:
519
520
521
522

    # fip_create --help to print usage information
    # fip_create <fip_name> <images to add> [--dump to show result]
    ./tools/fip_create/fip_create fip.bin --dump \
523
       --tb-fw build/<platform>/debug/bl2.bin --soc-fw build/<platform>/debug/bl31.bin
524
525
526
527

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
528
      file: 'build/<platform>/debug/bl2.bin'
529
    - EL3 Runtime Firmware BL31: offset=0x8270, size=0xC218
530
      file: 'build/<platform>/debug/bl31.bin'
531
532
533
534
535
536
537
538
539
540
    ---------------------------
    Creating "fip.bin"

View the contents of an existing Firmware package:

    ./tools/fip_create/fip_create fip.bin --dump

     Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x81E8
541
    - EL3 Runtime Firmware BL31: offset=0x8270, size=0xC218
542
543
    ---------------------------

544
Existing package entries can be individually updated:
545
546
547

    # Change the BL2 from Debug to Release version
    ./tools/fip_create/fip_create fip.bin --dump \
548
      --tb-fw build/<platform>/release/bl2.bin
549
550
551
552

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0x88, size=0x7240
553
      file: 'build/<platform>/release/bl2.bin'
554
    - EL3 Runtime Firmware BL31: offset=0x72C8, size=0xC218
555
556
557
558
559
    ---------------------------
    Updating "fip.bin"


### Debugging options
560
561
562

To compile a debug version and make the build more verbose use

563
564
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- \
    BL33=<path-to>/<bl33_image>                                \
565
    make PLAT=<platform> DEBUG=1 V=1 all fip
566
567
568
569
570
571
572
573
574
575
576

AArch64 GCC uses DWARF version 4 debugging symbols by default. Some tools (for
example DS-5) might not support this and may need an older version of DWARF
symbols to be emitted by GCC. This can be achieved by using the
`-gdwarf-<version>` flag, with the version being set to 2 or 3. Setting the
version to 2 is recommended for DS-5 versions older than 5.16.

When debugging logic problems it might also be useful to disable all compiler
optimizations by using `-O0`.

NOTE: Using `-O0` could cause output images to be larger and base addresses
577
578
might need to be recalculated (see the **Memory layout on ARM development
platforms** section in the [Firmware Design]).
579
580
581

Extra debug options can be passed to the build system by setting `CFLAGS`:

582
583
584
    CFLAGS='-O0 -gdwarf-2'                                     \
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- \
    BL33=<path-to>/<bl33_image>                                \
585
    make PLAT=<platform> DEBUG=1 V=1 all fip
586

587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
It is also possible to introduce an infinite loop to help in debugging the
post-BL2 phase of the Trusted Firmware. This can be done by rebuilding BL1 with
the `SPIN_ON_BL1_EXIT=1` build flag. Refer to the "Summary of build options"
section. In this case, the developer may take control of the target using a
debugger when indicated by the console output. When using DS-5, the following
commands can be used:

    # Stop target execution
    interrupt

    #
    # Prepare your debugging environment, e.g. set breakpoints
    #

    # Jump over the debug loop
    set var $AARCH64::$Core::$PC = $AARCH64::$Core::$PC + 4

    # Resume execution
    continue
606

607
608
### Building the Test Secure Payload

609
610
The TSP is coupled with a companion runtime service in the BL31 firmware,
called the TSPD. Therefore, if you intend to use the TSP, the BL31 image
611
612
613
614
must be recompiled as well. For more information on SPs and SPDs, see the
"Secure-EL1 Payloads and Dispatchers" section in the [Firmware Design].

First clean the Trusted Firmware build directory to get rid of any previous
615
BL31 binary. Then to build the TSP image and include it into the FIP use:
616

617
618
    CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu- \
    BL33=<path-to>/<bl33_image>                                \
619
    make PLAT=<platform> SPD=tspd all fip
620
621
622

An additional boot loader binary file is created in the `build` directory:

623
*   `build/<platform>/<build-type>/bl32.bin`
624

625
626
The FIP will now contain the additional BL32 image. Here is an example
output from an FVP build in release mode including BL32 and using
627
`FVP_AARCH64_EFI.fd` as BL33 image:
628
629
630
631
632

    Firmware Image Package ToC:
    ---------------------------
    - Trusted Boot Firmware BL2: offset=0xD8, size=0x6000
      file: './build/fvp/release/bl2.bin'
633
    - EL3 Runtime Firmware BL31: offset=0x60D8, size=0x9000
634
      file: './build/fvp/release/bl31.bin'
635
    - Secure Payload BL32 (Trusted OS): offset=0xF0D8, size=0x3000
636
      file: './build/fvp/release/bl32.bin'
637
    - Non-Trusted Firmware BL33: offset=0x120D8, size=0x280000
638
639
640
641
642
      file: '../FVP_AARCH64_EFI.fd'
    ---------------------------
    Creating "build/fvp/release/fip.bin"


643
644
645
646
647
### Building the Certificate Generation Tool

The `cert_create` tool can be built separately through the following commands:

    $ cd tools/cert_create
648
    $ make PLAT=<platform> [DEBUG=1] [V=1]
649
650
651
652
653
654
655
656
657
658

`DEBUG=1` builds the tool in debug mode. `V=1` makes the build process more
verbose. The following command should be used to obtain help about the tool:

    $ ./cert_create -h

The `cert_create` tool is automatically built with the `fip` target when
`GENERATE_COT=1`.


659
660
661
### Building FIP images with support for Trusted Board Boot

Trusted Board Boot primarily consists of the following two features:
662

663
664
665
666
667
*   Image Authentication, described in [Trusted Board Boot], and
*   Firmware Update, described in [Firmware Update]

The following steps should be followed to build FIP and (optionally) FWU_FIP
images with support for these features:
668

669
1.  Fulfill the dependencies of the `mbedtls` cryptographic and image parser
Juan Castillo's avatar
Juan Castillo committed
670
671
672
673
    modules by checking out a recent version of the [mbed TLS Repository]. It
    is important to use a version that is compatible with TF and fixes any
    known security vulnerabilities. See [mbed TLS Security Center] for more
    information. This version of TF is tested with tag `mbedtls-2.2.0`.
674

Juan Castillo's avatar
Juan Castillo committed
675
    The `drivers/auth/mbedtls/mbedtls_*.mk` files contain the list of mbed TLS
676
677
    source files the modules depend upon.
    `include/drivers/auth/mbedtls/mbedtls_config.h` contains the configuration
Juan Castillo's avatar
Juan Castillo committed
678
    options required to build the mbed TLS sources.
679

Juan Castillo's avatar
Juan Castillo committed
680
681
    Note that the mbed TLS library is licensed under the Apache version 2.0
    license. Using mbed TLS source code will affect the licensing of
682
683
    Trusted Firmware binaries that are built using this library.

684
685
2.  To build the FIP image, ensure the following command line variables are set
    while invoking `make` to build Trusted Firmware:
686

Juan Castillo's avatar
Juan Castillo committed
687
    *   `MBEDTLS_DIR=<path of the directory containing mbed TLS sources>`
688
689
690
    *   `TRUSTED_BOARD_BOOT=1`
    *   `GENERATE_COT=1`

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    In the case of ARM platforms, the location of the ROTPK hash must also be
    specified at build time. Two locations are currently supported (see
    `ARM_ROTPK_LOCATION` build option):

    *   `ARM_ROTPK_LOCATION=regs`: the ROTPK hash is obtained from the Trusted
        root-key storage registers present in the platform. On Juno, this
        registers are read-only. On FVP Base and Cortex models, the registers
        are read-only, but the value can be specified using the command line
        option `bp.trusted_key_storage.public_key` when launching the model.
        On both Juno and FVP models, the default value corresponds to an
        ECDSA-SECP256R1 public key hash, whose private part is not currently
        available.

    *   `ARM_ROTPK_LOCATION=devel_rsa`: use the ROTPK hash that is hardcoded
        in the ARM platform port. The private/public RSA key pair may be
        found in `plat/arm/board/common/rotpk`.

    Example of command line using RSA development keys:

710
        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-      \
711
        BL33=<path-to>/<bl33_image>                                     \
Juan Castillo's avatar
Juan Castillo committed
712
        MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
713
714
715
716
717
718
719
720
721
722
        make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1        \
        ARM_ROTPK_LOCATION=devel_rsa                                    \
        ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem        \
        all fip

    The result of this build will be the bl1.bin and the fip.bin binaries, with
    the difference that the FIP will include the certificates corresponding to
    the Chain of Trust described in the TBBR-client document. These certificates
    can also be found in the output build directory.

723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
3.  The optional FWU_FIP contains any additional images to be loaded from
    Non-Volatile storage during the [Firmware Update] process. To build the
    FWU_FIP, any FWU images required by the platform must be specified on the
    command line. On ARM development platforms like Juno, these are:

    *   NS_BL2U. The AP non-secure Firmware Updater image.
    *   SCP_BL2U. The SCP Firmware Update Configuration image.

    Example of Juno command line for generating both `fwu` and `fwu_fip`
    targets using RSA development:

        CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-none-elf-       \
        BL33=<path-to>/<bl33_image>                                     \
        SCP_BL2=<path-to>/<scp_bl2_image>                               \
        SCP_BL2U=<path-to>/<scp_bl2u_image>                             \
        NS_BL2U=<path-to>/<ns_bl2u_image>                               \
        MBEDTLS_DIR=<path of the directory containing mbed TLS sources> \
        make PLAT=juno TRUSTED_BOARD_BOOT=1 GENERATE_COT=1              \
        ARM_ROTPK_LOCATION=devel_rsa                                    \
        ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_rsa.pem        \
        all fip fwu_fip

    Note:   The BL2U image will be built by default and added to the FWU_FIP.
            The user may override this by adding `BL2U=<path-to>/<bl2u_image>`
            to the command line above.

    Note:   Building and installing the non-secure and SCP FWU images (NS_BL1U,
            NS_BL2U and SCP_BL2U) is outside the scope of this document.

    The result of this build will be bl1.bin, fip.bin and fwu_fip.bin binaries.
    Both the FIP and FWU_FIP will include the certificates corresponding to the
    Chain of Trust described in the TBBR-client document. These certificates
    can also be found in the output build directory.

757

758
### Checking source code style
759
760
761

When making changes to the source for submission to the project, the source
must be in compliance with the Linux style guide, and to assist with this check
762
763
the project Makefile contains two targets, which both utilise the
`checkpatch.pl` script that ships with the Linux source tree.
764

765
766
767
To check the entire source tree, you must first download a copy of
`checkpatch.pl` (or the full Linux source), set the `CHECKPATCH` environment
variable to point to the script and build the target checkcodebase:
768

769
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkcodebase
770
771
772
773

To just check the style on the files that differ between your local branch and
the remote master, use:

774
    make CHECKPATCH=<path-to-linux>/linux/scripts/checkpatch.pl checkpatch
775
776

If you wish to check your patch against something other than the remote master,
777
778
set the `BASE_COMMIT` variable to your desired branch. By default, `BASE_COMMIT`
is set to `origin/master`.
779
780


781
782
6.  Building the rest of the software stack
-------------------------------------------
783

784
785
786
787
788
789
The Linaro release provides a set of scripts that automate the process of
building all components of the software stack. However, the scripts only support
a limited number of Trusted Firmware build options. Therefore, it is recommended
to modify these scripts to build all components except Trusted Firmware, and
build Trusted Firmware separately as described in the section "Building the
Trusted Firmware" above.
790

791
The instructions below are targeted at an OpenEmbedded filesystem.
792

793
794
795
1.  To exclude Trusted Firmware from the automated build process, edit the
    variant file `build-scripts/variants/<platform>-oe`, where `<platform>`
    is either `fvp` or `juno`. Add the following lines at the end of the file:
796

797
798
        # Disable ARM Trusted Firmware build
        ARM_TF_BUILD_ENABLED=0
799

800
2.  Launch the build script:
801

802
803
        CROSS_COMPILE=aarch64-linux-gnu- \
        build-scripts/build-all.sh <platform>-oe
804

805
### Preparing the Firmware Image Package
806

807
808
809
The EDK2 binary should be specified as `BL33` in the `make` command line when
building the Trusted Firmware. See the "Building the Trusted Firmware" section
above. The EDK2 binary for use with the ARM Trusted Firmware can be found here:
810

811
812
    uefi/edk2/Build/ArmVExpress-FVP-AArch64-Minimal/DEBUG_GCC49/FV/FVP_AARCH64_EFI.fd   [for FVP]
    uefi/edk2/Build/ArmJuno/DEBUG_GCC49/FV/BL33_AP_UEFI.fd                              [for Juno]
813

814
### Building an alternative EDK2
815

816
817
*   By default, EDK2 is built in debug mode. To build a release version instead,
    change the following line in the variant file:
818

819
        UEFI_BUILD_MODE=DEBUG
820

821
    into:
822

823
        UEFI_BUILD_MODE=RELEASE
824

825
826
827
*   On FVP, if legacy GICv2 locations are used, the EDK2 platform makefile must
    be updated. This is required as EDK2 does not support probing for the GIC
    location. To do this, first clean the EDK2 build directory:
828

829
        build-scripts/build-uefi.sh fvp-oe clean
830

831
    Then edit the following file:
832

833
        uefi/edk2/ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.mak
834

835
    and add the following build flag into the `EDK2_MACROS` variable:
836

837
838
        -D ARM_FVP_LEGACY_GICV2_LOCATION=1

839
840
    Then rebuild everything as described above in step 2.

841
842
    Finally rebuild the Trusted Firmware to generate a new FIP using the
    instructions in the "Building the Trusted Firmware" section.
843

844

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
7.  EL3 payloads alternative boot flow
--------------------------------------

On a pre-production system, the ability to execute arbitrary, bare-metal code at
the highest exception level is required. It allows full, direct access to the
hardware, for example to run silicon soak tests.

Although it is possible to implement some baremetal secure firmware from
scratch, this is a complex task on some platforms, depending on the level of
configuration required to put the system in the expected state.

Rather than booting a baremetal application, a possible compromise is to boot
`EL3 payloads` through the Trusted Firmware instead. This is implemented as an
alternative boot flow, where a modified BL2 boots an EL3 payload, instead of
loading the other BL images and passing control to BL31. It reduces the
complexity of developing EL3 baremetal code by:

*   putting the system into a known architectural state;
*   taking care of platform secure world initialization;
864
*   loading the SCP_BL2 image if required by the platform.
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

When booting an EL3 payload on ARM standard platforms, the configuration of the
TrustZone controller is simplified such that only region 0 is enabled and is
configured to permit secure access only. This gives full access to the whole
DRAM to the EL3 payload.

The system is left in the same state as when entering BL31 in the default boot
flow. In particular:

*   Running in EL3;
*   Current state is AArch64;
*   Little-endian data access;
*   All exceptions disabled;
*   MMU disabled;
*   Caches disabled.

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
### Booting an EL3 payload

The EL3 payload image is a standalone image and is not part of the FIP. It is
not loaded by the Trusted Firmware. Therefore, there are 2 possible scenarios:

*   The EL3 payload may reside in non-volatile memory (NVM) and execute in
    place. In this case, booting it is just a matter of specifying the right
    address in NVM through `EL3_PAYLOAD_BASE` when building the TF.

*   The EL3 payload needs to be loaded in volatile memory (e.g. DRAM) at
    run-time.

To help in the latter scenario, the `SPIN_ON_BL1_EXIT=1` build option can be
used. The infinite loop that it introduces in BL1 stops execution at the right
moment for a debugger to take control of the target and load the payload (for
example, over JTAG).

It is expected that this loading method will work in most cases, as a debugger
connection is usually available in a pre-production system. The user is free to
use any other platform-specific mechanism to load the EL3 payload, though.

#### Booting an EL3 payload on FVP

The EL3 payloads boot flow requires the CPU's mailbox to be cleared at reset for
the secondary CPUs holding pen to work properly. Unfortunately, its reset value
is undefined on the FVP platform and the FVP platform code doesn't clear it.
Therefore, one must modify the way the model is normally invoked in order to
clear the mailbox at start-up.

One way to do that is to create an 8-byte file containing all zero bytes using
the following command:

    dd if=/dev/zero of=mailbox.dat bs=1 count=8

and pre-load it into the FVP memory at the mailbox address (i.e. `0x04000000`)
using the following model parameters:

    --data cluster0.cpu0=mailbox.dat@0x04000000   [Base FVPs]
    --data=mailbox.dat@0x04000000                 [Foundation FVP]

To provide the model with the EL3 payload image, the following methods may be
used:

1.  If the EL3 payload is able to execute in place, it may be programmed into
    flash memory. On Base Cortex and AEM FVPs, the following model parameter
    loads it at the base address of the NOR FLASH1 (the NOR FLASH0 is already
    used for the FIP):

        -C bp.flashloader1.fname="/path/to/el3-payload"

    On Foundation FVP, there is no flash loader component and the EL3 payload
    may be programmed anywhere in flash using method 3 below.

2.  When using the `SPIN_ON_BL1_EXIT=1` loading method, the following DS-5
    command may be used to load the EL3 payload ELF image over JTAG:

        load /path/to/el3-payload.elf

3.  The EL3 payload may be pre-loaded in volatile memory using the following
    model parameters:

        --data cluster0.cpu0="/path/to/el3-payload"@address  [Base FVPs]
        --data="/path/to/el3-payload"@address                [Foundation FVP]

    The address provided to the FVP must match the `EL3_PAYLOAD_BASE` address
    used when building the Trusted Firmware.

#### Booting an EL3 payload on Juno

If the EL3 payload is able to execute in place, it may be programmed in flash
memory by adding an entry in the `SITE1/HBI0262x/images.txt` configuration file
on the Juno SD card (where `x` depends on the revision of the Juno board).
Refer to the [Juno Getting Started Guide], section 2.3 "Flash memory
programming" for more information.

Alternatively, the same DS-5 command mentioned in the FVP section above can
be used to load the EL3 payload's ELF file over JTAG on Juno.

959
960

8.  Preparing the images to run on FVP
961
--------------------------------------
962

963
964
965
Note: This section can be ignored when booting an EL3 payload, as no Flattened
Device Tree or kernel image is needed in this case.

966
### Obtaining the Flattened Device Trees
967
968

Depending on the FVP configuration and Linux configuration used, different
969
FDT files are required. FDTs for the Foundation and Base FVPs can be found in
970
the Trusted Firmware source directory under `fdts/`. The Foundation FVP has a
971
subset of the Base FVP components. For example, the Foundation FVP lacks CLCD
972
and MMC support, and has only one CPU cluster.
973

974
975
976
Note: It is not recommended to use the FDTs built along the kernel because not
all FDTs are available from there.

977
978
979
*   `fvp-base-gicv2-psci.dtb`

    (Default) For use with both AEMv8 and Cortex-A57-A53 Base FVPs with
980
    Base memory map configuration.
981
982
983

*   `fvp-base-gicv2legacy-psci.dtb`

984
    For use with AEMv8 Base FVP with legacy VE GIC memory map configuration.
985
986
987

*   `fvp-base-gicv3-psci.dtb`

988
989
    For use with both AEMv8 and Cortex-A57-A53 Base FVPs with Base memory map
    configuration and Linux GICv3 support.
990

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
*   `fvp-foundation-gicv2-psci.dtb`

    (Default) For use with Foundation FVP with Base memory map configuration.

*   `fvp-foundation-gicv2legacy-psci.dtb`

    For use with Foundation FVP with legacy VE GIC memory map configuration.

*   `fvp-foundation-gicv3-psci.dtb`

    For use with Foundation FVP with Base memory map configuration and Linux
    GICv3 support.

1004
Copy the chosen FDT blob as `fdt.dtb` to the directory from which the FVP
1005
is launched. Alternatively a symbolic link may be used.
1006

1007
1008
### Preparing the kernel image

1009
1010
Copy the kernel image file `linux/arch/arm64/boot/Image` to the directory from
which the FVP is launched. Alternatively a symbolic link may be used.
1011
1012


1013
9.  Running the software on FVP
1014
-------------------------------
1015

1016
This version of the ARM Trusted Firmware has been tested on the following ARM
1017
1018
FVPs (64-bit versions only).

1019
1020
1021
1022
1023
*   `Foundation_Platform` (Version 9.4, Build 9.4.59)
*   `FVP_Base_AEMv8A-AEMv8A` (Version 7.0, Build 0.8.7004)
*   `FVP_Base_Cortex-A57x4-A53x4` (Version 7.0, Build 0.8.7004)
*   `FVP_Base_Cortex-A57x1-A53x1` (Version 7.0, Build 0.8.7004)
*   `FVP_Base_Cortex-A57x2-A53x4` (Version 7.0, Build 0.8.7004)
1024
1025
1026

NOTE: The build numbers quoted above are those reported by launching the FVP
with the `--version` parameter.
1027
1028
1029

NOTE: The software will not work on Version 1.0 of the Foundation FVP.
The commands below would report an `unhandled argument` error in this case.
1030

1031
1032
NOTE: The Foundation FVP does not provide a debugger interface.

1033
1034
1035
The Foundation FVP is a cut down version of the AArch64 Base FVP. It can be
downloaded for free from [ARM's website][ARM FVP website].

1036
1037
1038
1039
1040
1041
1042
1043
The Linaro release provides a script to run the software on FVP. However, it
only supports a limited number of model parameter options. Therefore, it is
recommended to launch the FVP manually for all use cases described below.

Please refer to the FVP documentation for a detailed description of the model
parameter options. A brief description of the important ones that affect the ARM
Trusted Firmware and normal world software behavior is provided below.

1044
1045

### Running on the Foundation FVP with reset to BL1 entrypoint
1046

1047
The following `Foundation_Platform` parameters should be used to boot Linux with
1048
1049
4 CPUs using the ARM Trusted Firmware.

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
    <path-to>/Foundation_Platform                   \
    --cores=4                                       \
    --secure-memory                                 \
    --visualization                                 \
    --gicv3                                         \
    --data="<path-to>/<bl1-binary>"@0x0             \
    --data="<path-to>/<FIP-binary>"@0x08000000      \
    --data="<path-to>/<fdt>"@0x83000000             \
    --data="<path-to>/<kernel-binary>"@0x80080000   \
    --block-device="<path-to>/<file-system-image>"
1060

1061
1062
1.  The `--data="<path-to-some-binary>"@0x...` parameters are used to load
    binaries into memory.
1063

1064
1065
1066
1067
1068
1069
1070
1071
    *   BL1 is loaded at the start of the Trusted ROM.
    *   The Firmware Image Package is loaded at the start of NOR FLASH0.
    *   The Linux kernel image and device tree are loaded in DRAM.

2.  The `--block-device` parameter is used to specify the path to the file
    system image provided to Linux via VirtioBlock. Note that it must point to
    the real file and that a symbolic link to this file cannot be used with the
    FVP.
1072

1073
1074
The default use-case for the Foundation FVP is to enable the GICv3 device in
the model but use the GICv2 FDT, in order for Linux to drive the GIC in GICv2
1075
1076
emulation mode.

1077
### Notes regarding Base FVP configuration options
1078

1079
1080
Please refer to these notes in the subsequent "Running on the Base FVP"
sections.
1081

1082
1083
1084
1.  The `-C bp.flashloader0.fname` parameter is used to load a Firmware Image
    Package at the start of NOR FLASH0 (see the "Building the Trusted Firmware"
    section above).
1085

1086
1087
1088
2.  Using `cache_state_modelled=1` makes booting very slow. The software will
    still work (and run much faster) without this option but this will hide any
    cache maintenance defects in the software.
1089

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
3.  The `-C bp.virtioblockdevice.image_path` parameter is used to specify the
    path to the file system image provided to Linux via VirtioBlock. Note that
    it must point to the real file and that a symbolic link to this file cannot
    be used with the FVP. Ensure that the FVP doesn't output any error messages.
    If the following error message is displayed:

        ERROR: BlockDevice: Failed to open "<path-to>/<file-system-image>"!

    then make sure the path to the file-system image in the model parameter is
    correct and that read permission is correctly set on the file-system image
    file.
1101

1102
1103
1104
1105
1106
1107
4.  Setting the `-C bp.secure_memory` parameter to `1` is only supported on
    Base FVP versions 5.4 and newer. Setting this parameter to `0` is also
    supported. The `-C bp.tzc_400.diagnostics=1` parameter is optional. It
    instructs the FVP to provide some helpful information if a secure memory
    violation occurs.

1108
1109
1110
1111
1112
1113
5.  The `--data="<path-to-some-binary>"@<base-address-of-binary>` parameter is
    used to load images into Base FVP memory. The base addresses used should
    match the image base addresses used while linking the images. This parameter
    is used to load the Linux kernel image and device tree into DRAM.

6.  This and the following notes only apply when the firmware is built with
1114
1115
1116
    the `RESET_TO_BL31` option.

    The `--data="<path-to><bl31|bl32|bl33-binary>"@<base-address-of-binary>`
1117
1118
1119
    parameter is needed to load the individual bootloader images in memory.
    BL32 image is only needed if BL31 has been built to expect a Secure-EL1
    Payload.
1120

1121
7.  The `-C cluster<X>.cpu<Y>.RVBAR=@<base-address-of-bl31>` parameter, where
1122
1123
1124
    X and Y are the cluster and CPU numbers respectively, is used to set the
    reset vector for each core.

1125
8.  Changing the default value of `ARM_TSP_RAM_LOCATION` will also require
1126
1127
    changing the value of
    `--data="<path-to><bl32-binary>"@<base-address-of-bl32>` to the new value of
1128
    `BL32_BASE`.
1129

1130
1131
1132
1133
1134
1135
1136
1137

### Running on the AEMv8 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.
1138

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
    <path-to>/FVP_Base_AEMv8A-AEMv8A                            \
    -C pctl.startup=0.0.0.0                                     \
    -C bp.secure_memory=1                                       \
    -C bp.tzc_400.diagnostics=1                                 \
    -C cluster0.NUM_CORES=4                                     \
    -C cluster1.NUM_CORES=4                                     \
    -C cache_state_modelled=1                                   \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>"      \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"           \
    --data cluster0.cpu0="<path-to>/<fdt>"@0x83000000           \
    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
1150
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
1151

1152
1153
1154
1155
### Running on the Cortex-A57-A53 Base FVP with reset to BL1 entrypoint

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.
1156
1157
1158
1159

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

1160
1161
1162
1163
1164
1165
1166
1167
1168
    <path-to>/FVP_Base_Cortex-A57x4-A53x4                       \
    -C pctl.startup=0.0.0.0                                     \
    -C bp.secure_memory=1                                       \
    -C bp.tzc_400.diagnostics=1                                 \
    -C cache_state_modelled=1                                   \
    -C bp.secureflashloader.fname="<path-to>/<bl1-binary>"      \
    -C bp.flashloader0.fname="<path-to>/<FIP-binary>"           \
    --data cluster0.cpu0="<path-to>/<fdt>"@0x83000000           \
    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000 \
1169
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"
1170

1171
### Running on the AEMv8 Base FVP with reset to BL31 entrypoint
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_AEMv8A-AEMv8A` parameters should be used to boot Linux
with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_AEMv8A-AEMv8A                             \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cluster0.NUM_CORES=4                                      \
    -C cluster1.NUM_CORES=4                                      \
    -C cache_state_modelled=1                                    \
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    -C cluster0.cpu0.RVBAR=0x04023000                            \
    -C cluster0.cpu1.RVBAR=0x04023000                            \
    -C cluster0.cpu2.RVBAR=0x04023000                            \
    -C cluster0.cpu3.RVBAR=0x04023000                            \
    -C cluster1.cpu0.RVBAR=0x04023000                            \
    -C cluster1.cpu1.RVBAR=0x04023000                            \
    -C cluster1.cpu2.RVBAR=0x04023000                            \
    -C cluster1.cpu3.RVBAR=0x04023000                            \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04023000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000    \
1196
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
1197
1198
    --data cluster0.cpu0="<path-to>/<fdt>"@0x83000000            \
    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000  \
1199
1200
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

1201
### Running on the Cortex-A57-A53 Base FVP with reset to BL31 entrypoint
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213

Please read "Notes regarding Base FVP configuration options" section above for
information about some of the options to run the software.

The following `FVP_Base_Cortex-A57x4-A53x4` model parameters should be used to
boot Linux with 8 CPUs using the ARM Trusted Firmware.

    <path-to>/FVP_Base_Cortex-A57x4-A53x4                        \
    -C pctl.startup=0.0.0.0                                      \
    -C bp.secure_memory=1                                        \
    -C bp.tzc_400.diagnostics=1                                  \
    -C cache_state_modelled=1                                    \
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    -C cluster0.cpu0.RVBARADDR=0x04023000                        \
    -C cluster0.cpu1.RVBARADDR=0x04023000                        \
    -C cluster0.cpu2.RVBARADDR=0x04023000                        \
    -C cluster0.cpu3.RVBARADDR=0x04023000                        \
    -C cluster1.cpu0.RVBARADDR=0x04023000                        \
    -C cluster1.cpu1.RVBARADDR=0x04023000                        \
    -C cluster1.cpu2.RVBARADDR=0x04023000                        \
    -C cluster1.cpu3.RVBARADDR=0x04023000                        \
    --data cluster0.cpu0="<path-to>/<bl31-binary>"@0x04023000    \
    --data cluster0.cpu0="<path-to>/<bl32-binary>"@0x04001000    \
1224
    --data cluster0.cpu0="<path-to>/<bl33-binary>"@0x88000000    \
1225
1226
    --data cluster0.cpu0="<path-to>/<fdt>"@0x83000000            \
    --data cluster0.cpu0="<path-to>/<kernel-binary>"@0x80080000  \
1227
1228
    -C bp.virtioblockdevice.image_path="<path-to>/<file-system-image>"

1229
1230
1231
### Configuring the GICv2 memory map

The Base FVP models support GICv2 with the default model parameters at the
1232
1233
following addresses. The Foundation FVP also supports these addresses when
configured for GICv3 in GICv2 emulation mode.
1234
1235
1236
1237
1238
1239

    GICv2 Distributor Interface     0x2f000000
    GICv2 CPU Interface             0x2c000000
    GICv2 Virtual CPU Interface     0x2c010000
    GICv2 Hypervisor Interface      0x2c02f000

1240
The AEMv8 Base FVP can be configured to support GICv2 at addresses
1241
1242
corresponding to the legacy (Versatile Express) memory map as follows. These are
the default addresses when using the Foundation FVP in GICv2 mode.
1243
1244
1245
1246
1247
1248

    GICv2 Distributor Interface     0x2c001000
    GICv2 CPU Interface             0x2c002000
    GICv2 Virtual CPU Interface     0x2c004000
    GICv2 Hypervisor Interface      0x2c006000

1249
1250
1251
The choice of memory map is reflected in the build variant field (bits[15:12])
in the `SYS_ID` register (Offset `0x0`) in the Versatile Express System
registers memory map (`0x1c010000`).
1252
1253
1254

*   `SYS_ID.Build[15:12]`

1255
    `0x1` corresponds to the presence of the Base GIC memory map. This is the
1256
    default value on the Base FVPs.
1257
1258
1259

*   `SYS_ID.Build[15:12]`

1260
1261
1262
1263
    `0x0` corresponds to the presence of the Legacy VE GIC memory map. This is
    the default value on the Foundation FVP.

This register can be configured as described in the following sections.
1264

1265
1266
1267
NOTE: If the legacy VE GIC memory map is used, then Trusted Firmware must be
compiled with the GICv2 only driver, and the corresponding FDT and BL33 images
should be used.
1268

1269
1270
#### Configuring AEMv8 Foundation FVP GIC for legacy VE memory map

1271
1272
The following parameters configure the Foundation FVP to use GICv2 with the
legacy VE memory map:
1273

1274
    <path-to>/Foundation_Platform             \
1275
    --cores=4                                 \
1276
    --secure-memory                           \
1277
1278
1279
1280
1281
    --visualization                           \
    --no-gicv3                                \
    --data="<path-to>/<bl1-binary>"@0x0       \
    --data="<path-to>/<FIP-binary>"@0x8000000 \
    --block-device="<path-to>/<file-system-image>"
1282
1283
1284

Explicit configuration of the `SYS_ID` register is not required.

1285
#### Configuring AEMv8 Base FVP GIC for legacy VE memory map
1286

1287
The following parameters configure the AEMv8 Base FVP to use GICv2 with the
1288
1289
legacy VE memory map. They must added to the parameters described in the
"Running on the AEMv8 Base FVP" section above:
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303

    -C cluster0.gic.GICD-offset=0x1000                  \
    -C cluster0.gic.GICC-offset=0x2000                  \
    -C cluster0.gic.GICH-offset=0x4000                  \
    -C cluster0.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster0.gic.GICV-offset=0x6000                  \
    -C cluster0.gic.PERIPH-size=0x8000                  \
    -C cluster1.gic.GICD-offset=0x1000                  \
    -C cluster1.gic.GICC-offset=0x2000                  \
    -C cluster1.gic.GICH-offset=0x4000                  \
    -C cluster1.gic.GICH-other-CPU-offset=0x5000        \
    -C cluster1.gic.GICV-offset=0x6000                  \
    -C cluster1.gic.PERIPH-size=0x8000                  \
    -C gic_distributor.GICD-alias=0x2c001000            \
1304
    -C gicv3.gicv2-only=1                               \
1305
    -C bp.variant=0x0
1306

1307
1308
1309
The `bp.variant` parameter corresponds to the build variant field of the
`SYS_ID` register.  Setting this to `0x0` allows the ARM Trusted Firmware to
detect the legacy VE memory map while configuring the GIC.
1310

1311
1312
1313

10.  Running the software on Juno
---------------------------------
1314

1315
This version of the ARM Trusted Firmware has been tested on Juno r0 and Juno r1.
1316

1317
1318
1319
1320
1321
To execute the software stack on Juno, the version of the Juno board recovery
image indicated in the [Linaro Release Notes] must be installed. If you have an
earlier version installed or are unsure which version is installed, please
re-install the recovery image by following the [Instructions for using Linaro's
deliverables on Juno][Juno Instructions].
1322

1323
### Preparing Trusted Firmware images
1324

1325
1326
1327
1328
1329
1330
The Juno platform requires a SCP_BL1 and a SCP_BL2 image to boot up. The
SCP_BL1 image contains the ROM firmware that runs on the SCP (System Control
Processor), whereas the SCP_BL2 image contains the SCP Runtime firmware. Both
images are embedded within the Juno board recovery image, these are the files
`bl0.bin` and `bl30.bin`, respectively. Please note that these filenames still
use the old terminology.
1331

1332
1333
The SCP_BL2 file must be part of the FIP image. Therefore, its path must be
supplied using the `SCP_BL2` variable on the command line when building the
1334
FIP. Please refer to the section "Building the Trusted Firmware".
1335

1336
After building Trusted Firmware, the files `bl1.bin` and `fip.bin` need copying
1337
to the `SOFTWARE/` directory of the Juno SD card.
1338

1339
### Other Juno software information
1340

1341
1342
1343
1344
Please visit the [ARM Platforms Portal] to get support and obtain any other Juno
software information. Please also refer to the [Juno Getting Started Guide] to
get more detailed information about the Juno ARM development platform and how to
configure it.
1345

1346
1347
1348
### Testing SYSTEM SUSPEND on Juno

The SYSTEM SUSPEND is a PSCI API which can be used to implement system suspend
1349
1350
1351
1352
1353
1354
to RAM. For more details refer to section 5.16 of [PSCI]. The [Linaro Release
Notes] point to the required SCP and motherboard firmware binaries supporting
this feature on Juno. The mainline linux kernel does not yet have support for
this feature on Juno but it is queued to be merged in v4.4. Till that becomes
available, the feature can be tested by using a custom kernel built from the
following repository:
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380

    git clone git://git.kernel.org/pub/scm/linux/kernel/git/lpieralisi/linux.git
    cd linux
    git checkout firmware/psci-1.0

Configure the linux kernel:

    export CROSS_COMPILE=<path-to-aarch64-gcc>/bin/aarch64-linux-gnu-
    make ARCH=arm64 defconfig

The feature is tested conveniently by using the RTC. Enable the RTC driver in
menuconfig

    make ARCH=arm64 menuconfig

The PL031 RTC driver can be enabled at the following location in menuconfig

    ARM AMBA PL031 RTC
      |   Location:
      |     -> Device Drivers
      |       -> Real Time Clock

Build the kernel

    make ARCH=arm64 Image -j8

1381
1382
Replace the kernel image in the `SOFTWARE/` directory of the Juno SD card with
the `Image` from `arch/arm64/boot/` of the linux directory.
1383
1384
1385
1386
1387
1388
1389
1390
1391

Reset the board and wait for it to boot. At the shell prompt issue the
following command:

    echo +10 > /sys/class/rtc/rtc1/wakealarm
    echo -n mem > /sys/power/state

The Juno board should suspend to RAM and then wakeup after 10 seconds due to
wakeup interrupt from RTC.
1392

1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

11.  Changes required for booting Linux on FVP in GICv3 mode
------------------------------------------------------------

In case the TF FVP port is built with the build option
`FVP_USE_GIC_DRIVER=FVP_GICV3`, then the GICv3 hardware cannot be used in
GICv2 legacy mode. The default build of UEFI for FVP in
[latest tracking kernel][Linaro Release Notes] configures GICv3 in GICv2 legacy
mode. This can be changed by setting the build flag
`gArmTokenSpaceGuid.PcdArmGicV3WithV2Legacy` to FALSE in
`uefi/edk2/ArmPlatformPkg/ArmVExpressPkg/ArmVExpress-FVP-AArch64.dsc`.

Recompile UEFI as mentioned [here][FVP Instructions].

The GICv3 DTBs found in ARM Trusted Firmware source directory can be
used to test the GICv3 kernel on the respective FVP models.

1410
1411
- - - - - - - - - - - - - - - - - - - - - - - - - -

1412
_Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved._
1413
1414


1415
[Firmware Design]:             firmware-design.md
1416
[ARM FVP website]:             http://www.arm.com/fvp
1417
1418
1419
1420
[Linaro Release Notes]:        https://community.arm.com/docs/DOC-10952#jive_content_id_Linaro_Release_1510
[ARM Platforms Portal]:        https://community.arm.com/groups/arm-development-platforms
[Linaro SW Instructions]:      https://community.arm.com/docs/DOC-10803
[Juno Instructions]:           https://community.arm.com/docs/DOC-10804
1421
[FVP Instructions]:            https://community.arm.com/docs/DOC-10831
1422
[Juno Getting Started Guide]:  http://infocenter.arm.com/help/topic/com.arm.doc.dui0928e/DUI0928E_juno_arm_development_platform_gsg.pdf
1423
[DS-5]:                        http://www.arm.com/products/tools/software-tools/ds-5/index.php
Juan Castillo's avatar
Juan Castillo committed
1424
1425
[mbed TLS Repository]:         https://github.com/ARMmbed/mbedtls.git
[mbed TLS Security Center]:    https://tls.mbed.org/security
1426
[PSCI]:                        http://infocenter.arm.com/help/topic/com.arm.doc.den0022c/DEN0022C_Power_State_Coordination_Interface.pdf "Power State Coordination Interface PDD (ARM DEN 0022C)"
1427
[Trusted Board Boot]:          trusted-board-boot.md
1428
[Firmware Update]:             ./firmware-update.md