fel.c 52.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <libusb.h>
#include <stdint.h>
20
#include <stdbool.h>
21
22
23
24
25
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
26
#include <stdarg.h>
27
#include <errno.h>
28
#include <unistd.h>
29
#include <sys/stat.h>
30

31
#include "portable_endian.h"
32
#include "progress.h"
Eric Molitor's avatar
Eric Molitor committed
33

34
35
36
static const uint16_t AW_USB_VENDOR_ID  = 0x1F3A;
static const uint16_t AW_USB_PRODUCT_ID = 0xEFE8;

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/* a helper function to report libusb errors */
void usb_error(int rc, const char *caption, int exitcode)
{
	if (caption)
		fprintf(stderr, "%s ", caption);

#if defined(LIBUSBX_API_VERSION) && (LIBUSBX_API_VERSION >= 0x01000102)
	fprintf(stderr, "ERROR %d: %s\n", rc, libusb_strerror(rc));
#else
	/* assume that libusb_strerror() is missing in the libusb API */
	fprintf(stderr, "ERROR %d\n", rc);
#endif

	if (exitcode != 0)
		exit(exitcode);
}

54
55
56
57
58
59
60
61
62
struct  aw_usb_request {
	char signature[8];
	uint32_t length;
	uint32_t unknown1;	/* 0x0c000000 */
	uint16_t request;
	uint32_t length2;	/* Same as length */
	char	pad[10];
}  __attribute__((packed));

63
64
65
66
67
68
69
70
71
72
73
struct aw_fel_version {
	char signature[8];
	uint32_t soc_id;	/* 0x00162300 */
	uint32_t unknown_0a;	/* 1 */
	uint16_t protocol;	/* 1 */
	uint8_t  unknown_12;	/* 0x44 */
	uint8_t  unknown_13;	/* 0x08 */
	uint32_t scratchpad;	/* 0x7e00 */
	uint32_t pad[2];	/* unused */
} __attribute__((packed));

74
75
76
static const int AW_USB_READ = 0x11;
static const int AW_USB_WRITE = 0x12;

77
78
static int AW_USB_FEL_BULK_EP_OUT;
static int AW_USB_FEL_BULK_EP_IN;
79
static int timeout = 60000;
80
static bool verbose = false; /* If set, makes the 'fel' tool more talkative */
81
82
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
83
84
85
86
87
88
89
90
91
92

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
93

94
95
static const int AW_USB_MAX_BULK_SEND = 4 * 1024 * 1024; // 4 MiB per bulk request

96
97
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
		   size_t length, bool progress)
98
{
99
100
101
102
103
104
	/*
	 * With no progress notifications, we'll use the maximum chunk size.
	 * Otherwise, it's useful to lower the size (have more chunks) to get
	 * more frequent status updates. 128 KiB per request seem suitable.
	 */
	size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
105
106

	size_t chunk;
107
108
	int rc, sent;
	while (length > 0) {
109
110
		chunk = length < max_chunk ? length : max_chunk;
		rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk, &sent, timeout);
111
112
		if (rc != 0)
			usb_error(rc, "usb_bulk_send()", 2);
113
114
		length -= sent;
		data += sent;
115
116
117

		if (progress)
			progress_update(sent); // notification after each chunk
118
119
120
121
122
123
124
	}
}

void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
	int rc, recv;
	while (length > 0) {
125
		rc = libusb_bulk_transfer(usb, ep, data, length, &recv, timeout);
126
127
		if (rc != 0)
			usb_error(rc, "usb_bulk_recv()", 2);
128
129
130
131
132
		length -= recv;
		data += recv;
	}
}

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_INVALID		0	/* Invalid Image	*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_TYPE_SCRIPT		6	/* Script file		*/
#define IH_NMLEN		32	/* Image Name Length	*/

/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH	-1

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * Utility function to determine the image type from a mkimage-compatible
 * header at given buffer (address).
 *
 * For invalid headers (insufficient size or 'magic' mismatch) the function
 * will return IH_TYPE_INVALID. Negative return values might indicate
 * special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
 * image doesn't match the expected (ARM) architecture.
 * Otherwise the function will return the "ih_type" field for valid headers.
 */
int get_image_type(const uint8_t *buf, size_t len)
{
	uint32_t *buf32 = (uint32_t *)buf;

	if (len <= HEADER_SIZE) /* insufficient length/size */
		return IH_TYPE_INVALID;
	if (be32toh(buf32[0]) != IH_MAGIC) /* signature mismatch */
		return IH_TYPE_INVALID;
	/* For sunxi, we always expect ARM architecture here */
	if (buf[29] != IH_ARCH_ARM)
		return IH_TYPE_ARCH_MISMATCH;

	/* assume a valid header, and return ih_type */
	return buf[30];
}

173
174
void aw_send_usb_request(libusb_device_handle *usb, int type, int length)
{
175
176
177
178
179
180
181
	struct aw_usb_request req = {
		.signature = "AWUC",
		.request = htole16(type),
		.length = htole32(length),
		.unknown1 = htole32(0x0c000000)
	};
	req.length2 = req.length;
182
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, &req, sizeof(req), false);
183
184
185
186
187
188
189
190
191
}

void aw_read_usb_response(libusb_device_handle *usb)
{
	char buf[13];
	usb_bulk_recv(usb, AW_USB_FEL_BULK_EP_IN, &buf, sizeof(buf));
	assert(strcmp(buf, "AWUS") == 0);
}

192
193
void aw_usb_write(libusb_device_handle *usb, const void *data, size_t len,
		  bool progress)
194
195
{
	aw_send_usb_request(usb, AW_USB_WRITE, len);
196
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, data, len, progress);
197
198
199
200
201
202
	aw_read_usb_response(usb);
}

void aw_usb_read(libusb_device_handle *usb, const void *data, size_t len)
{
	aw_send_usb_request(usb, AW_USB_READ, len);
203
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_IN, data, len, false);
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
	aw_read_usb_response(usb);
}

struct aw_fel_request {
	uint32_t request;
	uint32_t address;
	uint32_t length;
	uint32_t pad;
};

static const int AW_FEL_VERSION = 0x001;
static const int AW_FEL_1_WRITE = 0x101;
static const int AW_FEL_1_EXEC  = 0x102;
static const int AW_FEL_1_READ  = 0x103;

void aw_send_fel_request(libusb_device_handle *usb, int type, uint32_t addr, uint32_t length)
{
221
222
223
224
225
	struct aw_fel_request req = {
		.request = htole32(type),
		.address = htole32(addr),
		.length = htole32(length)
	};
226
	aw_usb_write(usb, &req, sizeof(req), false);
227
228
229
230
231
232
233
234
}

void aw_read_fel_status(libusb_device_handle *usb)
{
	char buf[8];
	aw_usb_read(usb, &buf, sizeof(buf));
}

235
void aw_fel_get_version(libusb_device_handle *usb, struct aw_fel_version *buf)
236
237
{
	aw_send_fel_request(usb, AW_FEL_VERSION, 0, 0);
238
	aw_usb_read(usb, buf, sizeof(*buf));
239
240
	aw_read_fel_status(usb);

241
242
243
244
245
246
247
248
249
250
251
252
	buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
	buf->unknown_0a = le32toh(buf->unknown_0a);
	buf->protocol = le32toh(buf->protocol);
	buf->scratchpad = le16toh(buf->scratchpad);
	buf->pad[0] = le32toh(buf->pad[0]);
	buf->pad[1] = le32toh(buf->pad[1]);
}

void aw_fel_print_version(libusb_device_handle *usb)
{
	struct aw_fel_version buf;
	aw_fel_get_version(usb, &buf);
253

Henrik Nordstrom's avatar
Henrik Nordstrom committed
254
	const char *soc_name="unknown";
255
	switch (buf.soc_id) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
256
257
258
	case 0x1623: soc_name="A10";break;
	case 0x1625: soc_name="A13";break;
	case 0x1633: soc_name="A31";break;
259
	case 0x1651: soc_name="A20";break;
Chen-Yu Tsai's avatar
Chen-Yu Tsai committed
260
	case 0x1650: soc_name="A23";break;
Chen-Yu Tsai's avatar
Chen-Yu Tsai committed
261
	case 0x1639: soc_name="A80";break;
262
	case 0x1667: soc_name="A33";break;
263
	case 0x1673: soc_name="A83T";break;
264
	case 0x1680: soc_name="H3";break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
265
266
	}

267
268
269
270
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
271
272
273
274
275
276
277
278
279
280
281
282
}

void aw_fel_read(libusb_device_handle *usb, uint32_t offset, void *buf, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_READ, offset, len);
	aw_usb_read(usb, buf, len);
	aw_read_fel_status(usb);
}

void aw_fel_write(libusb_device_handle *usb, void *buf, uint32_t offset, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
283
	aw_usb_write(usb, buf, len, false);
284
285
286
287
288
289
290
291
292
	aw_read_fel_status(usb);
}

void aw_fel_execute(libusb_device_handle *usb, uint32_t offset)
{
	aw_send_fel_request(usb, AW_FEL_1_EXEC, offset, 0);
	aw_read_fel_status(usb);
}

293
294
295
296
297
298
299
300
/*
 * This function is a higher-level wrapper for the FEL write functionality.
 * Unlike aw_fel_write() above - which is reserved for internal use - this
 * routine is meant to be called from "user" code, and supports (= allows)
 * progress callbacks.
 * The return value represents elapsed time in seconds (needed for execution).
 */
double aw_write_buffer(libusb_device_handle *usb, void *buf, uint32_t offset,
301
		       size_t len, bool progress)
302
303
304
305
306
307
308
{
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size
			   && offset + len >= uboot_entry)
	{
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
309
			offset, (uint32_t)(offset + len),
310
311
312
313
314
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
	double start = gettime();
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
315
	aw_usb_write(usb, buf, len, progress);
316
317
318
319
	aw_read_fel_status(usb);
	return gettime() - start;
}

320
321
322
323
324
325
326
327
void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
		printf("%08lx: ",(long int)offset + j);
		for (i = 0; i < 16; i++) {
328
			if (j + i < size)
329
				printf("%02x ", buf[j+i]);
330
			else
331
332
				printf("__ ");
		}
333
		putchar(' ');
334
		for (i = 0; i < 16; i++) {
335
336
337
338
			if (j + i >= size)
				putchar('.');
			else
				putchar(isprint(buf[j+i]) ? buf[j+i] : '.');
339
		}
340
		putchar('\n');
341
342
	}
}
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
unsigned int file_size(const char *filename)
{
	struct stat st;
	if (stat(filename, &st) != 0) {
		fprintf(stderr, "stat() error on file \"%s\": %s\n", filename,
			strerror(errno));
		exit(1);
	}
	if (!S_ISREG(st.st_mode)) {
		fprintf(stderr, "error: \"%s\" is not a regular file\n", filename);
		exit(1);
	}
	return st.st_size;
}

359
360
361
362
int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
363
	if (!out) {
364
		perror("Failed to open output file");
365
366
		exit(1);
	}
367
368
369
370
371
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

372
373
374
375
376
377
378
379
380
381
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
382
	if (!in) {
383
		perror("Failed to open input file");
384
385
		exit(1);
	}
386
387
	
	while(1) {
388
389
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
390
		offset += n;
391
		if (n < len)
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

void aw_fel_hexdump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	hexdump(buf, offset, size);
}

void aw_fel_dump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	fwrite(buf, size, 1, stdout);
}
Henrik Nordstrom's avatar
Henrik Nordstrom committed
416
void aw_fel_fill(libusb_device_handle *usb, uint32_t offset, size_t size, unsigned char value)
417
418
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
419
	memset(buf, value, size);
420
	aw_write_buffer(usb, buf, offset, size, false);
421
422
}

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * The 'sram_swap_buffers' structure is used to describe information about
 * two buffers in SRAM, the content of which needs to be exchanged before
 * calling the U-Boot SPL code and then exchanged again before returning
 * control back to the FEL code from the BROM.
 */

typedef struct {
	uint32_t buf1; /* BROM buffer */
	uint32_t buf2; /* backup storage location */
	uint32_t size; /* buffer size */
} sram_swap_buffers;

/*
 * Each SoC variant may have its own list of memory buffers to be exchanged
 * and the information about the placement of the thunk code, which handles
 * the transition of execution from the BROM FEL code to the U-Boot SPL and
 * back.
 *
 * Note: the entries in the 'swap_buffers' tables need to be sorted by 'buf1'
 * addresses. And the 'buf1' addresses are the BROM data buffers, while 'buf2'
 * addresses are the intended backup locations.
445
446
447
448
449
450
451
452
453
454
455
456
 *
 * Also for performance reasons, we optionally want to have MMU enabled with
 * optimal section attributes configured (the code from the BROM should use
 * I-cache, writing data to the DRAM area should use write combining). The
 * reason is that the BROM FEL protocol implementation moves data using the
 * CPU somewhere on the performance critical path when transferring data over
 * USB. The older SoC variants (A10/A13/A20/A31/A23) already have MMU enabled
 * and we only need to adjust section attributes. The BROM in newer SoC variants
 * (A33/A83T/H3) doesn't enable MMU anymore, so we need to find some 16K of
 * spare space in SRAM to place the translation table there and specify it as
 * the 'mmu_tt_addr' field in the 'soc_sram_info' structure. The 'mmu_tt_addr'
 * address must be 16K aligned.
457
458
 */
typedef struct {
459
	uint32_t           soc_id;       /* ID of the SoC */
460
	uint32_t           spl_addr;     /* SPL load address */
461
462
463
	uint32_t           scratch_addr; /* A safe place to upload & run code */
	uint32_t           thunk_addr;   /* Address of the thunk code */
	uint32_t           thunk_size;   /* Maximal size of the thunk code */
464
	bool               needs_l2en;   /* Set the L2EN bit */
465
	uint32_t           mmu_tt_addr;  /* MMU translation table address */
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
	sram_swap_buffers *swap_buffers;
} soc_sram_info;

/*
 * The FEL code from BROM in A10/A13/A20 sets up two stacks for itself. One
 * at 0x2000 (and growing down) for the IRQ handler. And another one at 0x7000
 * (and also growing down) for the regular code. In order to use the whole
 * 32 KiB in the A1/A2 sections of SRAM, we need to temporarily move these
 * stacks elsewhere. And the addresses above 0x7000 are also a bit suspicious,
 * so it might be safer to backup the 0x7000-0x8000 area too. On A10/A13/A20
 * we can use the SRAM section A3 (0x8000) for this purpose.
 */
sram_swap_buffers a10_a13_a20_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x8000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x8800, .size = 0x8000 - 0x5C00 },
481
	{ .size = 0 }  /* End of the table */
482
483
484
485
486
487
488
489
490
491
492
};

/*
 * A31 is very similar to A10/A13/A20, except that it has no SRAM at 0x8000.
 * So we use the SRAM section at 0x44000 instead. This is the memory, which
 * is normally shared with the OpenRISC core (should we do an extra check to
 * ensure that this core is powered off and can't interfere?).
 */
sram_swap_buffers a31_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x44000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x44800, .size = 0x8000 - 0x5C00 },
493
	{ .size = 0 }  /* End of the table */
494
495
};

496
497
498
499
500
501
502
/*
 * A80 has 40KiB SRAM A1 at 0x10000 where the SPL has to be loaded to. The
 * secure SRAM B at 0x20000 is used as backup area for FEL stacks and data.
 */
sram_swap_buffers a80_sram_swap_buffers[] = {
	{ .buf1 = 0x11800, .buf2 = 0x20000, .size = 0x800 },
	{ .buf1 = 0x15400, .buf2 = 0x20800, .size = 0x18000 - 0x15400 },
503
	{ .size = 0 }  /* End of the table */
504
505
};

506
507
508
soc_sram_info soc_sram_info_table[] = {
	{
		.soc_id       = 0x1623, /* Allwinner A10 */
509
		.scratch_addr = 0x1000,
510
511
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
512
		.needs_l2en   = true,
513
514
515
	},
	{
		.soc_id       = 0x1625, /* Allwinner A13 */
516
		.scratch_addr = 0x1000,
517
518
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
519
		.needs_l2en   = true,
520
521
522
	},
	{
		.soc_id       = 0x1651, /* Allwinner A20 */
523
		.scratch_addr = 0x1000,
524
525
526
		.thunk_addr   = 0xAE00, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
	},
Hans de Goede's avatar
Hans de Goede committed
527
528
	{
		.soc_id       = 0x1650, /* Allwinner A23 */
529
		.scratch_addr = 0x1000,
Hans de Goede's avatar
Hans de Goede committed
530
531
532
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
533
534
	{
		.soc_id       = 0x1633, /* Allwinner A31 */
535
		.scratch_addr = 0x1000,
536
537
538
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
539
540
	{
		.soc_id       = 0x1667, /* Allwinner A33 */
541
		.scratch_addr = 0x1000,
542
543
544
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
545
546
	{
		.soc_id       = 0x1673, /* Allwinner A83T */
547
		.scratch_addr = 0x1000,
548
549
550
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
551
552
	{
		.soc_id       = 0x1680, /* Allwinner H3 */
553
		.scratch_addr = 0x1000,
554
		.mmu_tt_addr  = 0x44000,
555
556
557
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
	},
558
559
560
	{
		.soc_id       = 0x1639, /* Allwinner A80 */
		.spl_addr     = 0x10000,
561
		.scratch_addr = 0x11000,
562
563
564
		.thunk_addr   = 0x23400, .thunk_size = 0x200,
		.swap_buffers = a80_sram_swap_buffers,
	},
565
	{ .swap_buffers = NULL } /* End of the table */
566
567
568
569
570
571
572
573
574
575
576
577
578
579
};

/*
 * This generic record assumes BROM with similar properties to A10/A13/A20/A31,
 * but no extra SRAM sections beyond 0x8000. It also assumes that the IRQ
 * handler stack usage never exceeds 0x400 bytes.
 *
 * The users may or may not hope that the 0x7000-0x8000 area is also unused
 * by the BROM and re-purpose it for the SPL stack.
 *
 * The size limit for the ".text + .data" sections is ~21 KiB.
 */
sram_swap_buffers generic_sram_swap_buffers[] = {
	{ .buf1 = 0x01C00, .buf2 = 0x5800, .size = 0x400 },
580
	{ .size = 0 }  /* End of the table */
581
582
583
};

soc_sram_info generic_sram_info = {
584
	.scratch_addr = 0x1000,
585
586
587
588
589
590
	.thunk_addr   = 0x5680, .thunk_size = 0x180,
	.swap_buffers = generic_sram_swap_buffers,
};

soc_sram_info *aw_fel_get_sram_info(libusb_device_handle *usb)
{
591
592
593
594
595
596
597
598
599
600
601
602
603
	/* persistent sram_info, retrieves result pointer once and caches it */
	static soc_sram_info *result = NULL;
	if (result == NULL) {
		int i;

		struct aw_fel_version buf;
		aw_fel_get_version(usb, &buf);

		for (i = 0; soc_sram_info_table[i].swap_buffers; i++)
			if (soc_sram_info_table[i].soc_id == buf.soc_id) {
				result = &soc_sram_info_table[i];
				break;
			}
604

605
606
607
608
609
610
611
		if (!result) {
			printf("Warning: no 'soc_sram_info' data for your SoC (id=%04X)\n",
			       buf.soc_id);
			result = &generic_sram_info;
		}
	}
	return result;
612
613
614
615
616
617
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

618
619
620
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
uint32_t aw_read_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			    uint32_t coproc, uint32_t opc1, uint32_t crn,
			    uint32_t crm, uint32_t opc2)
{
	uint32_t val = 0;
	uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)    |
			  ((crn & 15) << 16)    |
			  ((coproc & 15) << 8)  |
			  ((opc2 & 7) << 5)     |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(opcode),     /* mrc  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xe58f0000), /* str  r0, [pc]                         */
		htole32(0xe12fff1e), /* bx   lr                               */
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 12, &val, sizeof(val));
	return le32toh(val);
}

void aw_write_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			 uint32_t coproc, uint32_t opc1, uint32_t crn,
			 uint32_t crm, uint32_t opc2, uint32_t val)
{
	uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)                |
			  ((crn & 15) << 16)                |
			  ((coproc & 15) << 8)              |
			  ((opc2 & 7) << 5)                 |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(0xe59f000c), /* ldr  r0, [pc, #12]                    */
		htole32(opcode),     /* mcr  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xf57ff04f), /* dsb  sy                               */
		htole32(0xf57ff06f), /* isb  sy                               */
		htole32(0xe12fff1e), /* bx   lr                               */
		htole32(val)
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
}

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
/* multiple "readl" from sequential addresses to a destination buffer */
void aw_fel_readl_n(libusb_device_handle *usb, uint32_t addr,
		    uint32_t *dst, size_t count)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	uint32_t val;
	uint32_t arm_code[] = {
		htole32(0xe59f0010), /* ldr        r0, [pc, #16]            */
		htole32(0xe5901000), /* ldr        r1, [r0]                 */
		htole32(0xe58f100c), /* str        r1, [pc, #12]            */
		htole32(0xe2800004), /* add        r0, r0, #4               */
		htole32(0xe58f0000), /* str        r0, [pc]                 */
		htole32(0xe12fff1e), /* bx         lr                       */
		htole32(addr),
		/* value goes here */
	};
	/* scratch buffer setup: transfers ARM code and also sets the addr */
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	while (count-- > 0) {
		/*
		 * Since the scratch code auto-increments addr, we can simply
		 * execute it repeatedly for sequential "readl"s; retrieving
		 * one uint32_t each time.
		 */
		aw_fel_execute(usb, sram_info->scratch_addr);
		aw_fel_read(usb, sram_info->scratch_addr + 28, &val, sizeof(val));
		*dst++ = le32toh(val);
	}
}

/* "readl" of a single value */
uint32_t aw_fel_readl(libusb_device_handle *usb, uint32_t addr)
{
	uint32_t val;
	aw_fel_readl_n(usb, addr, &val, 1);
	return val;
}

/* multiple "writel" from a source buffer to sequential addresses */
void aw_fel_writel_n(libusb_device_handle *usb, uint32_t addr,
		     uint32_t *src, size_t count)
{
	if (count == 0) return; /* on zero count, do not access *src at all */

	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	uint32_t arm_code[] = {
		htole32(0xe59f0010), /* ldr        r0, [pc, #16]            */
		htole32(0xe59f1010), /* ldr        r1, [pc, #16]            */
		htole32(0xe5801000), /* str        r1, [r0]                 */
		htole32(0xe2800004), /* add        r0, r0, #4               */
		htole32(0xe58f0000), /* str        r0, [pc]                 */
		htole32(0xe12fff1e), /* bx         lr                       */
		htole32(addr),
		htole32(*src++)
	};
	/* scratch buffer setup: transfers ARM code, addr and first value */
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr); /* stores first value */
	while (--count > 0) {
		/*
		 * Subsequent transfers only need to set up the next value
		 * to store (since the scratch code auto-increments addr).
		 */
		aw_fel_write(usb, src++, sram_info->scratch_addr + 28, sizeof(uint32_t));
		aw_fel_execute(usb, sram_info->scratch_addr);
	}
}

/* "writel" of a single value */
void aw_fel_writel(libusb_device_handle *usb, uint32_t addr, uint32_t val)
{
	aw_fel_writel_n(usb, addr, &val, 1);
}

739
void aw_enable_l2_cache(libusb_device_handle *usb, soc_sram_info *sram_info)
740
741
742
743
744
745
746
747
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

748
749
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
750
751
}

752
753
void aw_get_stackinfo(libusb_device_handle *usb, soc_sram_info *sram_info,
                      uint32_t *sp_irq, uint32_t *sp)
754
755
756
757
758
759
760
761
762
763
764
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

765
766
767
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x10, results, 8);
768
769
770
771
772
773
774
775
776
777
778
779
780
781
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

782
783
784
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x24, results, 8);
785
786
787
788
789
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

790
uint32_t aw_get_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info)
791
{
792
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0);
793
794
}

795
796
797
798
799
800
801
802
803
804
uint32_t aw_get_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2);
}

uint32_t aw_get_dacr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0);
}

805
uint32_t aw_get_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info)
806
{
807
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0);
808
809
}

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
void aw_set_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbr0)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0, ttbr0);
}

void aw_set_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbcr)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2, ttbcr);
}

void aw_set_dacr(libusb_device_handle *usb, soc_sram_info *sram_info,
		 uint32_t dacr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0, dacr);
}

void aw_set_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t sctlr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0, sctlr);
}

/*
 * Reconstruct the same MMU translation table as used by the A20 BROM.
 * We are basically reverting the changes, introduced in newer SoC
 * variants. This works fine for the SoC variants with the memory
 * layout similar to A20 (the SRAM is in the first megabyte of the
 * address space and the BROM is in the last megabyte of the address
 * space).
 */
uint32_t *aw_generate_mmu_translation_table(void)
{
	uint32_t *tt = malloc(4096 * sizeof(uint32_t));
	uint32_t i;

	/*
	 * Direct mapping using 1MB sections with TEXCB=00000 (Strongly
	 * ordered) for all memory except the first and the last sections,
	 * which have TEXCB=00100 (Normal). Domain bits are set to 1111
	 * and AP bits are set to 11, but this is mostly irrelevant.
	 */
	for (i = 0; i < 4096; i++)
		tt[i] = 0x00000DE2 | (i << 20);
	tt[0x000] |= 0x1000;
	tt[0xFFF] |= 0x1000;

	return tt;
}

861
862
uint32_t *aw_backup_and_disable_mmu(libusb_device_handle *usb,
                                    soc_sram_info *sram_info)
863
{
864
	uint32_t *tt = NULL;
865
	uint32_t sctlr, ttbr0, ttbcr, dacr;
866
867
868
	uint32_t i;

	uint32_t arm_code[] = {
869
		/* Disable I-cache, MMU and branch prediction */
870
871
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
872
873
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
874
875
876
877
878
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

879
880
881
882
883
884
885
886
887
888
889
	/*
	 * Below are some checks for the register values, which are known
	 * to be initialized in this particular way by the existing BROM
	 * implementations. We don't strictly need them to exactly match,
	 * but still have these safety guards in place in order to detect
	 * and review any potential configuration changes in future SoC
	 * variants (if one of these checks fails, then it is not a serious
	 * problem but more likely just an indication that one of these
	 * checks needs to be relaxed).
	 */

890
	/* Basically, ignore M/Z/I/V bits and expect no TEX remap */
891
	sctlr = aw_get_sctlr(usb, sram_info);
892
	if ((sctlr & ~((0x7 << 11) | 1)) != 0x00C50078) {
893
894
895
896
		fprintf(stderr, "Unexpected SCTLR (%08X)\n", sctlr);
		exit(1);
	}

897
	if (!(sctlr & 1)) {
898
899
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
900
901
	}

902
	dacr = aw_get_dacr(usb, sram_info);
903
904
905
906
907
	if (dacr != 0x55555555) {
		fprintf(stderr, "Unexpected DACR (%08X)\n", dacr);
		exit(1);
	}

908
	ttbcr = aw_get_ttbcr(usb, sram_info);
909
910
	if (ttbcr != 0x00000000) {
		fprintf(stderr, "Unexpected TTBCR (%08X)\n", ttbcr);
911
912
913
		exit(1);
	}

914
	ttbr0 = aw_get_ttbr0(usb, sram_info);
915
916
917
918
919
	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

920
	tt = malloc(16 * 1024);
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
	aw_fel_read(usb, ttbr0, tt, 16 * 1024);
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

938
	pr_info("Disabling I-cache, MMU and branch prediction...");
939
940
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
941
942
943
944
945
	pr_info(" done.\n");

	return tt;
}

946
947
948
void aw_restore_and_enable_mmu(libusb_device_handle *usb,
                               soc_sram_info *sram_info,
                               uint32_t *tt)
949
950
{
	uint32_t i;
951
	uint32_t ttbr0 = aw_get_ttbr0(usb, sram_info);
952
953

	uint32_t arm_code[] = {
954
955
956
957
958
959
960
961
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
962
963
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
964
965
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
966
967
968
969
970
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

987
988
989
990
991
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
	aw_fel_write(usb, tt, ttbr0, 16 * 1024);

992
	pr_info("Enabling I-cache, MMU and branch prediction...");
993
994
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
995
996
997
998
999
	pr_info(" done.\n");

	free(tt);
}

1000
1001
1002
1003
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
1004
#define SPL_LEN_LIMIT 0x8000
1005

1006
1007
1008
1009
1010
1011
1012
1013
void aw_fel_write_and_execute_spl(libusb_device_handle *usb,
				  uint8_t *buf, size_t len)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
1014
	uint32_t sp, sp_irq;
1015
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
1016
	uint32_t *buf32 = (uint32_t *)buf;
1017
	uint32_t cur_addr = sram_info->spl_addr;
1018
	uint32_t *tt = NULL;
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

	if (!sram_info || !sram_info->swap_buffers) {
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

1047
1048
	if (sram_info->needs_l2en) {
		pr_info("Enabling the L2 cache\n");
1049
		aw_enable_l2_cache(usb, sram_info);
1050
1051
	}

1052
	aw_get_stackinfo(usb, sram_info, &sp_irq, &sp);
1053
1054
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

1055
	tt = aw_backup_and_disable_mmu(usb, sram_info);
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
	if (!tt && sram_info->mmu_tt_addr) {
		if (sram_info->mmu_tt_addr & 0x3FFF) {
			fprintf(stderr, "SPL: 'mmu_tt_addr' must be 16K aligned\n");
			exit(1);
		}
		pr_info("Generating the new MMU translation table at 0x%08X\n",
		        sram_info->mmu_tt_addr);
		/*
		 * These settings are used by the BROM in A10/A13/A20 and
		 * we replicate them here when enabling the MMU. The DACR
		 * value 0x55555555 means that accesses are checked against
		 * the permission bits in the translation tables for all
		 * domains. The TTBCR value 0x00000000 means that the short
		 * descriptor translation table format is used, TTBR0 is used
		 * for all the possible virtual addresses (N=0) and that the
		 * translation table must be aligned at a 16K boundary.
		 */
		aw_set_dacr(usb, sram_info, 0x55555555);
		aw_set_ttbcr(usb, sram_info, 0x00000000);
		aw_set_ttbr0(usb, sram_info, sram_info->mmu_tt_addr);
		tt = aw_generate_mmu_translation_table();
	}
1078

1079
1080
	swap_buffers = sram_info->swap_buffers;
	for (i = 0; swap_buffers[i].size; i++) {
1081
1082
1083
1084
1085
		if ((swap_buffers[i].buf2 >= sram_info->spl_addr) &&
		    (swap_buffers[i].buf2 < sram_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - sram_info->spl_addr;
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
1086
1087
			if (tmp > len)
				tmp = len;
1088
1089
			aw_fel_write(usb, buf, cur_addr, tmp);
			cur_addr += tmp;
1090
1091
1092
			buf += tmp;
			len -= tmp;
		}
1093
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
1094
1095
1096
1097
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
			aw_fel_write(usb, buf, swap_buffers[i].buf2, tmp);
1098
			cur_addr += tmp;
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
	if (sram_info->thunk_addr < spl_len_limit)
		spl_len_limit = sram_info->thunk_addr;

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
1116
		aw_fel_write(usb, buf, cur_addr, len);
1117

1118
1119
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(sram_info->spl_addr) +
		     (i + 1) * sizeof(*swap_buffers);
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

	if (thunk_size > sram_info->thunk_size) {
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
			(int)sizeof(fel_to_spl_thunk), sram_info->thunk_size);
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
1130
1131
	       &sram_info->spl_addr, sizeof(sram_info->spl_addr));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
1132
1133
1134
1135
1136
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

1137
	pr_info("=> Executing the SPL...");
1138
1139
	aw_fel_write(usb, thunk_buf, sram_info->thunk_addr, thunk_size);
	aw_fel_execute(usb, sram_info->thunk_addr);
1140
	pr_info(" done.\n");
1141
1142
1143
1144
1145
1146
1147

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
1148
	aw_fel_read(usb, sram_info->spl_addr + 4, header_signature, 8);
1149
1150
1151
1152
1153
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
1154

1155
1156
	/* re-enable the MMU if it was enabled by BROM */
	if(tt != NULL)
1157
		aw_restore_and_enable_mmu(usb, sram_info, tt);
1158
1159
}

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
void aw_fel_write_uboot_image(libusb_device_handle *usb,
		uint8_t *buf, size_t len)
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	uint32_t *buf32 = (uint32_t *)buf;

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
	/* Check for a valid mkimage header */
	int image_type = get_image_type(buf, len);
	if (image_type <= IH_TYPE_INVALID) {
		switch (image_type) {
		case IH_TYPE_INVALID:
			fprintf(stderr, "Invalid U-Boot image: bad size or signature\n");
			break;
		case IH_TYPE_ARCH_MISMATCH:
			fprintf(stderr, "Invalid U-Boot image: wrong architecture\n");
			break;
		default:
			fprintf(stderr, "Invalid U-Boot image: error code %d\n",
				image_type);
		}
1188
1189
		exit(1);
	}
1190
1191
1192
	if (image_type != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image type mismatch: "
			"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
1193
1194
1195
1196
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
1197
	if (data_size != len - HEADER_SIZE) {
1198
		fprintf(stderr, "U-Boot image data size mismatch: "
1199
			"expected %zu, got %u\n", len - HEADER_SIZE, data_size);
1200
1201
1202
1203
1204
1205
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1206
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.c
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

1218
	aw_write_buffer(usb, buf + HEADER_SIZE, load_addr, data_size, false);
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
void aw_fel_process_spl_and_uboot(libusb_device_handle *usb,
		const char *filename)
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
	aw_fel_write_and_execute_spl(usb, buf, size);
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
1237
1238
	if (size > SPL_LEN_LIMIT)
		aw_fel_write_uboot_image(usb, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
1239
	free(buf);
1240
1241
}

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
/*
 * Test the SPL header for our "sunxi" variant. We want to make sure that
 * we can safely use specific header fields to pass information to U-Boot.
 * In case of a missing signature (e.g. Allwinner boot0) or header version
 * mismatch, this function will return "false". If all seems fine,
 * the result is "true".
 */
#define SPL_SIGNATURE			"SPL" /* marks "sunxi" header */
#define SPL_MIN_VERSION			1 /* minimum required version */
#define SPL_MAX_VERSION			1 /* maximum supported version */
1252
bool have_sunxi_spl(libusb_device_handle *usb, uint32_t spl_addr)
1253
1254
1255
1256
1257
1258
1259
{
	uint8_t spl_signature[4];

	aw_fel_read(usb, spl_addr + 0x14,
		&spl_signature, sizeof(spl_signature));

	if (memcmp(spl_signature, SPL_SIGNATURE, 3) != 0)
1260
		return false; /* signature mismatch, no "sunxi" SPL */
1261
1262
1263
1264
1265
1266

	if (spl_signature[3] < SPL_MIN_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X < required minimum 0x%02X\n",
			spl_signature[3], SPL_MIN_VERSION);
		fprintf(stderr, "You need to update your U-Boot (mksunxiboot) to a more recent version.\n");
1267
		return false;
1268
1269
1270
1271
1272
1273
	}
	if (spl_signature[3] > SPL_MAX_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X > maximum supported 0x%02X\n",
			spl_signature[3], SPL_MAX_VERSION);
		fprintf(stderr, "You need a more recent version of this (sunxi-tools) fel utility.\n");
1274
		return false;
1275
	}
1276
	return true; /* sunxi SPL and suitable version */
1277
1278
1279
1280
}

/*
 * Pass information to U-Boot via specialized fields in the SPL header
1281
1282
 * (see "boot_file_head" in ${U-BOOT}/arch/arm/include/asm/arch-sunxi/spl.h),
 * providing the boot script address (DRAM location of boot.scr).
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
 */
void pass_fel_information(libusb_device_handle *usb, uint32_t script_address)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);

	/* write something _only_ if we have a suitable SPL header */
	if (have_sunxi_spl(usb, sram_info->spl_addr)) {
		pr_info("Passing boot info via sunxi SPL: script address = 0x%08X\n",
			script_address);
		aw_fel_write(usb, &script_address,
			sram_info->spl_addr + 0x18, sizeof(script_address));
	}
}

1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
static int aw_fel_get_endpoint(libusb_device_handle *usb)
{
	struct libusb_device *dev = libusb_get_device(usb);
	struct libusb_config_descriptor *config;
	int if_idx, set_idx, ep_idx, ret;

	ret = libusb_get_active_config_descriptor(dev, &config);
	if (ret)
		return ret;

	for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
		const struct libusb_interface *iface = config->interface + if_idx;

		for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
			const struct libusb_interface_descriptor *setting =
				iface->altsetting + set_idx;

			for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
				const struct libusb_endpoint_descriptor *ep =
					setting->endpoint + ep_idx;

				// Test for bulk transfer endpoint
				if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) !=
						LIBUSB_TRANSFER_TYPE_BULK)
					continue;

				if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
						LIBUSB_ENDPOINT_IN)
					AW_USB_FEL_BULK_EP_IN = ep->bEndpointAddress;
				else
					AW_USB_FEL_BULK_EP_OUT = ep->bEndpointAddress;
			}
		}
	}

	libusb_free_config_descriptor(config);

	return 0;
}

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
/* private helper function, gets used for "write*" and "multi*" transfers */
static unsigned int file_upload(libusb_device_handle *handle, size_t count,
				size_t argc, char **argv, progress_cb_t progress)
{
	if (argc < count * 2) {
		fprintf(stderr, "error: too few arguments for uploading %zu files\n",
			count);
		exit(1);
	}

	/* get all file sizes, keeping track of total bytes */
	size_t size = 0;
	unsigned int i;
	for (i = 0; i < count; i++)
		size += file_size(argv[i * 2 + 1]);

	progress_start(progress, size); // set total size and progress callback

	/* now transfer each file in turn */
	for (i = 0; i < count; i++) {
		void *buf = load_file(argv[i * 2 + 1], &size);
		if (size > 0) {
			uint32_t offset = strtoul(argv[i * 2], NULL, 0);
			aw_write_buffer(handle, buf, offset, size, true);

			// If we transferred a script, try to inform U-Boot about its address.
			if (get_image_type(buf, size) == IH_TYPE_SCRIPT)
				pass_fel_information(handle, offset);
		}
		free(buf);
	}

	return i; // return number of files that were processed
}

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
/* open libusb handle to desired FEL device */
static libusb_device_handle *open_fel_device(int busnum, int devnum,
		uint16_t vendor_id, uint16_t product_id)
{
	libusb_device_handle *result = NULL;

	if (busnum < 0 || devnum < 0) {
		/* With the default values (busnum -1, devnum -1) we don't care
		 * for a specific USB device; so let libusb open the first
		 * device that matches VID/PID.
		 */
		result = libusb_open_device_with_vid_pid(NULL, vendor_id, product_id);
		if (!result) {
			switch (errno) {
			case EACCES:
				fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
				break;
			default:
				fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
				break;
			}
			exit(1);
		}
		return result;
	}

	/* look for specific bus and device number */
	pr_info("Selecting USB Bus %03d Device %03d\n", busnum, devnum);
	bool found = false;
	ssize_t rc, i;
	libusb_device **list;

	rc = libusb_get_device_list(NULL, &list);
1405
1406
	if (rc < 0)
		usb_error(rc, "libusb_get_device_list()", 1);
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
	for (i = 0; i < rc; i++) {
		if (libusb_get_bus_number(list[i]) == busnum
		    && libusb_get_device_address(list[i]) == devnum) {
			found = true; /* bus:devnum matched */
			struct libusb_device_descriptor desc;
			libusb_get_device_descriptor(list[i], &desc);
			if (desc.idVendor != vendor_id
			    || desc.idProduct != product_id) {
				fprintf(stderr, "ERROR: Bus %03d Device %03d not a FEL device "
					"(expected %04x:%04x, got %04x:%04x)\n", busnum, devnum,
					vendor_id, product_id, desc.idVendor, desc.idProduct);
				exit(1);
			}
			/* open handle to this specific device (incrementing its refcount) */
			rc = libusb_open(list[i], &result);
1422
1423
			if (rc != 0)
				usb_error(rc, "libusb_open()", 1);
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
			break;
		}
	}
	libusb_free_device_list(list, true);

	if (!found) {
		fprintf(stderr, "ERROR: Bus %03d Device %03d not found in libusb device list\n",
			busnum, devnum);
		exit(1);
	}
	return result;
}

1437
1438
int main(int argc, char **argv)
{
1439
	bool uboot_autostart = false; /* flag for "uboot" command = U-Boot autostart */
1440
	bool pflag_active = false; /* -p switch, causing "write" to output progress */
1441
1442
	libusb_device_handle *handle;
	int busnum = -1, devnum = -1;
1443
#if defined(__linux__)
1444
	int iface_detached = -1;
1445
#endif
1446
1447

	if (argc <= 1) {
1448
1449
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
1450
			"	-p, --progress			\"write\" transfers show a progress bar\n"
1451
			"	-d, --dev bus:devnum		Use specific USB bus and device number\n"
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
1463
1464
1465
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
1466
1467
			"	readl address			Read 32-bit value from device memory\n"
			"	writel address value		Write 32-bit value to device memory\n"
1468
			"	read address length file	Write memory contents into file\n"
1469
			"	write address file		Store file contents into memory\n"
1470
			"	write-with-progress addr file	\"write\" with progress bar\n"
1471
1472
			"	write-with-gauge addr file	Output progress for \"dialog --gauge\"\n"
			"	write-with-xgauge addr file	Extended gauge output (updates prompt)\n"
1473
1474
			"	multi[write] # addr file ...	\"write-with-progress\" multiple files,\n"
			"					sharing a common progress status\n"
1475
1476
1477
			"	multi[write]-with-gauge ...	like their \"write-with-*\" counterpart,\n"
			"	multi[write]-with-xgauge ...	  but following the 'multi' syntax:\n"
			"					  <#> addr file [addr file [...]]\n"
1478
			"	echo-gauge \"some text\"		Update prompt/caption for gauge output\n"
1479
1480
			"	ver[sion]			Show BROM version\n"
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1481
			"	fill address length value	Fill memory\n"
1482
1483
			, argv[0]
		);
1484
		exit(0);
1485
1486
	}

1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
	/* process all "prefix"-type arguments first */
	while (argc > 1) {
		if (strcmp(argv[1], "--verbose") == 0 || strcmp(argv[1], "-v") == 0)
			verbose = true;
		else if (strcmp(argv[1], "--progress") == 0 || strcmp(argv[1], "-p") == 0)
			pflag_active = true;
		else if (strncmp(argv[1], "--dev", 5) == 0 || strncmp(argv[1], "-d", 2) == 0) {
			char *dev_arg = argv[1];
			dev_arg += strspn(dev_arg, "-dev="); /* skip option chars, ignore '=' */
			if (*dev_arg == 0 && argc > 2) { /* at end of argument, use the next one instead */
				dev_arg = argv[2];
				argc -= 1;
				argv += 1;
			}
			if (sscanf(dev_arg, "%d:%d", &busnum, &devnum) != 2
			    || busnum <= 0 || devnum <= 0) {
				fprintf(stderr, "ERROR: Expected 'bus:devnum', got '%s'.\n", dev_arg);
				exit(1);
			}
		} else
			break; /* no valid (prefix) option detected, exit loop */
		argc -= 1;
		argv += 1;
1510
	}
1511

1512
1513
	int rc = libusb_init(NULL);
	assert(rc == 0);
1514
1515
	handle = open_fel_device(busnum, devnum, AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
	assert(handle != NULL);
1516
	rc = libusb_claim_interface(handle, 0);
1517
1518
1519
1520
1521
1522
1523
#if defined(__linux__)
	if (rc != LIBUSB_SUCCESS) {
		libusb_detach_kernel_driver(handle, 0);
		iface_detached = 0;
		rc = libusb_claim_interface(handle, 0);
	}
#endif
1524
1525
	assert(rc == 0);

1526
1527
1528
1529
1530
	if (aw_fel_get_endpoint(handle)) {
		fprintf(stderr, "ERROR: Failed to get FEL mode endpoint addresses!\n");
		exit(1);
	}

1531
1532
	while (argc > 1 ) {
		int skip = 1;
1533

1534
		if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
1535
1536
1537
1538
1539
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1540
1541
1542
1543
1544
1545
		} else if (strcmp(argv[1], "readl") == 0 && argc > 2) {
			printf("0x%08x\n", aw_fel_readl(handle, strtoul(argv[2], NULL, 0)));
			skip = 2;
		} else if (strcmp(argv[1], "writel") == 0 && argc > 3) {
			aw_fel_writel(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1546
		} else if (strncmp(argv[1], "exe", 3) == 0 && argc > 2) {
1547
1548
1549
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
		} else if (strncmp(argv[1], "ver", 3) == 0 && argc > 1) {
1550
			aw_fel_print_version(handle);
1551
1552
			skip=1;
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1553
1554
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
					pflag_active ? progress_bar : NULL);
1555
1556
1557
		} else if (strcmp(argv[1], "write-with-progress") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_bar);
1558
1559
1560
1561
1562
1563
		} else if (strcmp(argv[1], "write-with-gauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge);
		} else if (strcmp(argv[1], "write-with-xgauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge_xxx);
1564
1565
1566
1567
1568
		} else if ((strcmp(argv[1], "multiwrite") == 0 ||
			    strcmp(argv[1], "multi") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_bar);
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
		} else if ((strcmp(argv[1], "multiwrite-with-gauge") == 0 ||
			    strcmp(argv[1], "multi-with-gauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge);
		} else if ((strcmp(argv[1], "multiwrite-with-xgauge") == 0 ||
			    strcmp(argv[1], "multi-with-xgauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge_xxx);
1579
1580
1581
1582
		} else if ((strcmp(argv[1], "echo-gauge") == 0) && argc > 2) {
			skip = 2;
			printf("XXX\n0\n%s\nXXX\n", argv[2]);
			fflush(stdout);
1583
1584
1585
1586
1587
1588
1589
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1590
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1591
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1592
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1593
1594
1595
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1596
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1597
1598
1599
1600
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
1601
1602
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
1603
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1604
			skip=2;
1605
1606
1607
1608
1609
1610
1611
1612
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

1613
	// auto-start U-Boot if requested (by the "uboot" command)
1614
	if (uboot_autostart) {
1615
1616
1617
1618
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1619
	libusb_release_interface(handle, 0);
1620
1621
1622
1623
#if defined(__linux__)
	if (iface_detached >= 0)
		libusb_attach_kernel_driver(handle, iface_detached);
#endif
1624
1625
	libusb_close(handle);
	libusb_exit(NULL);
1626

1627
1628
	return 0;
}