fel.c 52.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
19
20
#include "common.h"
#include "portable_endian.h"
#include "progress.h"
21
#include "soc_info.h"
22

23
24
#include <libusb.h>
#include <stdint.h>
25
#include <stdbool.h>
26
27
28
29
30
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
31
#include <stdarg.h>
32
#include <errno.h>
33
#include <unistd.h>
34
#include <sys/stat.h>
35

36
37
38
static const uint16_t AW_USB_VENDOR_ID  = 0x1F3A;
static const uint16_t AW_USB_PRODUCT_ID = 0xEFE8;

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/* a helper function to report libusb errors */
void usb_error(int rc, const char *caption, int exitcode)
{
	if (caption)
		fprintf(stderr, "%s ", caption);

#if defined(LIBUSBX_API_VERSION) && (LIBUSBX_API_VERSION >= 0x01000102)
	fprintf(stderr, "ERROR %d: %s\n", rc, libusb_strerror(rc));
#else
	/* assume that libusb_strerror() is missing in the libusb API */
	fprintf(stderr, "ERROR %d\n", rc);
#endif

	if (exitcode != 0)
		exit(exitcode);
}

56
57
58
59
60
61
62
63
64
65
66
67
struct  aw_usb_request {
	char signature[8];
	uint32_t length;
	uint32_t unknown1;	/* 0x0c000000 */
	uint16_t request;
	uint32_t length2;	/* Same as length */
	char	pad[10];
}  __attribute__((packed));

static const int AW_USB_READ = 0x11;
static const int AW_USB_WRITE = 0x12;

68
69
static int AW_USB_FEL_BULK_EP_OUT;
static int AW_USB_FEL_BULK_EP_IN;
70
71
static int timeout = 10000; /* 10 seconds */

72
static bool verbose = false; /* If set, makes the 'fel' tool more talkative */
73
74
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
75
76
77
78
79
80
81
82
83
84

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
85

86
87
88
89
90
91
92
93
94
95
/*
 * AW_USB_MAX_BULK_SEND and the timeout constant are related.
 * Both need to be selected in a way that transferring the maximum chunk size
 * with (SoC-specific) slow transfer speed won't time out.
 *
 * The 512 KiB here are chosen based on the assumption that we want a 10 seconds
 * timeout, and "slow" transfers take place at approx. 64 KiB/sec - so we can
 * expect the maximum chunk being transmitted within 8 seconds or less.
 */
static const int AW_USB_MAX_BULK_SEND = 512 * 1024; /* 512 KiB per bulk request */
96

97
98
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
		   size_t length, bool progress)
99
{
100
101
102
103
	/*
	 * With no progress notifications, we'll use the maximum chunk size.
	 * Otherwise, it's useful to lower the size (have more chunks) to get
	 * more frequent status updates. 128 KiB per request seem suitable.
104
	 * (Worst case of "slow" transfers -> one update every two seconds.)
105
106
	 */
	size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
107
108

	size_t chunk;
109
110
	int rc, sent;
	while (length > 0) {
111
112
		chunk = length < max_chunk ? length : max_chunk;
		rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk, &sent, timeout);
113
114
		if (rc != 0)
			usb_error(rc, "usb_bulk_send()", 2);
115
116
		length -= sent;
		data += sent;
117
118

		if (progress)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
119
			progress_update(sent); /* notification after each chunk */
120
121
122
123
124
125
126
	}
}

void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
	int rc, recv;
	while (length > 0) {
127
		rc = libusb_bulk_transfer(usb, ep, data, length, &recv, timeout);
128
129
		if (rc != 0)
			usb_error(rc, "usb_bulk_recv()", 2);
130
131
132
133
134
		length -= recv;
		data += recv;
	}
}

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_INVALID		0	/* Invalid Image	*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_TYPE_SCRIPT		6	/* Script file		*/
#define IH_NMLEN		32	/* Image Name Length	*/

/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH	-1

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * Utility function to determine the image type from a mkimage-compatible
 * header at given buffer (address).
 *
 * For invalid headers (insufficient size or 'magic' mismatch) the function
 * will return IH_TYPE_INVALID. Negative return values might indicate
 * special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
 * image doesn't match the expected (ARM) architecture.
 * Otherwise the function will return the "ih_type" field for valid headers.
 */
int get_image_type(const uint8_t *buf, size_t len)
{
	uint32_t *buf32 = (uint32_t *)buf;

	if (len <= HEADER_SIZE) /* insufficient length/size */
		return IH_TYPE_INVALID;
	if (be32toh(buf32[0]) != IH_MAGIC) /* signature mismatch */
		return IH_TYPE_INVALID;
	/* For sunxi, we always expect ARM architecture here */
	if (buf[29] != IH_ARCH_ARM)
		return IH_TYPE_ARCH_MISMATCH;

	/* assume a valid header, and return ih_type */
	return buf[30];
}

175
176
void aw_send_usb_request(libusb_device_handle *usb, int type, int length)
{
177
178
179
180
181
182
183
	struct aw_usb_request req = {
		.signature = "AWUC",
		.request = htole16(type),
		.length = htole32(length),
		.unknown1 = htole32(0x0c000000)
	};
	req.length2 = req.length;
184
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, &req, sizeof(req), false);
185
186
187
188
189
190
191
192
193
}

void aw_read_usb_response(libusb_device_handle *usb)
{
	char buf[13];
	usb_bulk_recv(usb, AW_USB_FEL_BULK_EP_IN, &buf, sizeof(buf));
	assert(strcmp(buf, "AWUS") == 0);
}

194
195
void aw_usb_write(libusb_device_handle *usb, const void *data, size_t len,
		  bool progress)
196
197
{
	aw_send_usb_request(usb, AW_USB_WRITE, len);
198
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, data, len, progress);
199
200
201
202
203
204
	aw_read_usb_response(usb);
}

void aw_usb_read(libusb_device_handle *usb, const void *data, size_t len)
{
	aw_send_usb_request(usb, AW_USB_READ, len);
205
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_IN, data, len, false);
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
	aw_read_usb_response(usb);
}

struct aw_fel_request {
	uint32_t request;
	uint32_t address;
	uint32_t length;
	uint32_t pad;
};

static const int AW_FEL_VERSION = 0x001;
static const int AW_FEL_1_WRITE = 0x101;
static const int AW_FEL_1_EXEC  = 0x102;
static const int AW_FEL_1_READ  = 0x103;

void aw_send_fel_request(libusb_device_handle *usb, int type, uint32_t addr, uint32_t length)
{
223
224
225
226
227
	struct aw_fel_request req = {
		.request = htole32(type),
		.address = htole32(addr),
		.length = htole32(length)
	};
228
	aw_usb_write(usb, &req, sizeof(req), false);
229
230
231
232
233
234
235
236
}

void aw_read_fel_status(libusb_device_handle *usb)
{
	char buf[8];
	aw_usb_read(usb, &buf, sizeof(buf));
}

237
void aw_fel_get_version(libusb_device_handle *usb, struct aw_fel_version *buf)
238
239
{
	aw_send_fel_request(usb, AW_FEL_VERSION, 0, 0);
240
	aw_usb_read(usb, buf, sizeof(*buf));
241
242
	aw_read_fel_status(usb);

243
244
245
246
247
248
249
250
251
252
253
254
	buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
	buf->unknown_0a = le32toh(buf->unknown_0a);
	buf->protocol = le32toh(buf->protocol);
	buf->scratchpad = le16toh(buf->scratchpad);
	buf->pad[0] = le32toh(buf->pad[0]);
	buf->pad[1] = le32toh(buf->pad[1]);
}

void aw_fel_print_version(libusb_device_handle *usb)
{
	struct aw_fel_version buf;
	aw_fel_get_version(usb, &buf);
255

Henrik Nordstrom's avatar
Henrik Nordstrom committed
256
	const char *soc_name="unknown";
257
	switch (buf.soc_id) {
Bernhard Nortmann's avatar
Bernhard Nortmann committed
258
259
260
261
262
	case 0x1623: soc_name="A10"; break;
	case 0x1625: soc_name="A13"; break;
	case 0x1633: soc_name="A31"; break;
	case 0x1651: soc_name="A20"; break;
	case 0x1650: soc_name="A23"; break;
263
	case 0x1689: soc_name="A64"; break;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
264
265
266
267
	case 0x1639: soc_name="A80"; break;
	case 0x1667: soc_name="A33"; break;
	case 0x1673: soc_name="A83T"; break;
	case 0x1680: soc_name="H3"; break;
268
	case 0x1701: soc_name="R40"; break;
269
	case 0x1718: soc_name="H5"; break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
270
271
	}

272
273
274
275
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
276
277
278
279
280
281
282
283
284
285
286
287
}

void aw_fel_read(libusb_device_handle *usb, uint32_t offset, void *buf, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_READ, offset, len);
	aw_usb_read(usb, buf, len);
	aw_read_fel_status(usb);
}

void aw_fel_write(libusb_device_handle *usb, void *buf, uint32_t offset, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
288
	aw_usb_write(usb, buf, len, false);
289
290
291
292
293
294
295
296
297
	aw_read_fel_status(usb);
}

void aw_fel_execute(libusb_device_handle *usb, uint32_t offset)
{
	aw_send_fel_request(usb, AW_FEL_1_EXEC, offset, 0);
	aw_read_fel_status(usb);
}

298
299
300
301
302
303
304
305
/*
 * This function is a higher-level wrapper for the FEL write functionality.
 * Unlike aw_fel_write() above - which is reserved for internal use - this
 * routine is meant to be called from "user" code, and supports (= allows)
 * progress callbacks.
 * The return value represents elapsed time in seconds (needed for execution).
 */
double aw_write_buffer(libusb_device_handle *usb, void *buf, uint32_t offset,
306
		       size_t len, bool progress)
307
308
309
310
311
312
313
{
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size
			   && offset + len >= uboot_entry)
	{
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
314
			offset, (uint32_t)(offset + len),
315
316
317
318
319
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
	double start = gettime();
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
320
	aw_usb_write(usb, buf, len, progress);
321
322
323
324
	aw_read_fel_status(usb);
	return gettime() - start;
}

325
326
327
328
329
330
void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
331
		printf("%08zx: ", offset + j);
332
		for (i = 0; i < 16; i++) {
333
			if (j + i < size)
334
				printf("%02x ", buf[j+i]);
335
			else
336
337
				printf("__ ");
		}
338
		putchar(' ');
339
		for (i = 0; i < 16; i++) {
340
341
342
343
			if (j + i >= size)
				putchar('.');
			else
				putchar(isprint(buf[j+i]) ? buf[j+i] : '.');
344
		}
345
		putchar('\n');
346
347
	}
}
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
unsigned int file_size(const char *filename)
{
	struct stat st;
	if (stat(filename, &st) != 0) {
		fprintf(stderr, "stat() error on file \"%s\": %s\n", filename,
			strerror(errno));
		exit(1);
	}
	if (!S_ISREG(st.st_mode)) {
		fprintf(stderr, "error: \"%s\" is not a regular file\n", filename);
		exit(1);
	}
	return st.st_size;
}

364
365
366
367
int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
368
	if (!out) {
369
		perror("Failed to open output file");
370
371
		exit(1);
	}
372
373
374
375
376
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

377
378
379
380
381
382
383
384
385
386
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
387
	if (!in) {
388
		perror("Failed to open input file");
389
390
		exit(1);
	}
391
	
Bernhard Nortmann's avatar
Bernhard Nortmann committed
392
	while (true) {
393
394
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
395
		offset += n;
396
		if (n < len)
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

void aw_fel_hexdump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	hexdump(buf, offset, size);
}

void aw_fel_dump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	fwrite(buf, size, 1, stdout);
}
Henrik Nordstrom's avatar
Henrik Nordstrom committed
421
void aw_fel_fill(libusb_device_handle *usb, uint32_t offset, size_t size, unsigned char value)
422
423
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
424
	memset(buf, value, size);
425
	aw_write_buffer(usb, buf, offset, size, false);
426
427
}

428
soc_info_t *aw_fel_get_soc_info(libusb_device_handle *usb)
429
{
430
431
	/* persistent SoC info, retrieves result pointer once and caches it */
	static soc_info_t *result = NULL;
432
433
434
435
	if (result == NULL) {
		struct aw_fel_version buf;
		aw_fel_get_version(usb, &buf);

436
		result = get_soc_info_from_version(&buf);
437
438
	}
	return result;
439
440
441
442
443
444
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

445
446
447
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

448
uint32_t aw_read_arm_cp_reg(libusb_device_handle *usb, soc_info_t *soc_info,
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
			    uint32_t coproc, uint32_t opc1, uint32_t crn,
			    uint32_t crm, uint32_t opc2)
{
	uint32_t val = 0;
	uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)    |
			  ((crn & 15) << 16)    |
			  ((coproc & 15) << 8)  |
			  ((opc2 & 7) << 5)     |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(opcode),     /* mrc  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xe58f0000), /* str  r0, [pc]                         */
		htole32(0xe12fff1e), /* bx   lr                               */
	};
464
465
466
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, soc_info->scratch_addr);
	aw_fel_read(usb, soc_info->scratch_addr + 12, &val, sizeof(val));
467
468
469
	return le32toh(val);
}

470
void aw_write_arm_cp_reg(libusb_device_handle *usb, soc_info_t *soc_info,
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
			 uint32_t coproc, uint32_t opc1, uint32_t crn,
			 uint32_t crm, uint32_t opc2, uint32_t val)
{
	uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)                |
			  ((crn & 15) << 16)                |
			  ((coproc & 15) << 8)              |
			  ((opc2 & 7) << 5)                 |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(0xe59f000c), /* ldr  r0, [pc, #12]                    */
		htole32(opcode),     /* mcr  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xf57ff04f), /* dsb  sy                               */
		htole32(0xf57ff06f), /* isb  sy                               */
		htole32(0xe12fff1e), /* bx   lr                               */
		htole32(val)
	};
488
489
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, soc_info->scratch_addr);
490
491
}

492
493
494
495
496
497
498
499
500
501
/*
 * We don't want the scratch code/buffer to exceed a maximum size of 0x400 bytes
 * (256 32-bit words) on readl_n/writel_n transfers. To guarantee this, we have
 * to account for the amount of space the ARM code uses.
 */
#define LCODE_ARM_WORDS  12 /* word count of the [read/write]l_n scratch code */
#define LCODE_ARM_SIZE   (LCODE_ARM_WORDS << 2) /* code size in bytes */
#define LCODE_MAX_TOTAL  0x100 /* max. words in buffer */
#define LCODE_MAX_WORDS  (LCODE_MAX_TOTAL - LCODE_ARM_WORDS) /* data words */

502
503
504
505
/* multiple "readl" from sequential addresses to a destination buffer */
void aw_fel_readl_n(libusb_device_handle *usb, uint32_t addr,
		    uint32_t *dst, size_t count)
{
506
507
508
509
510
511
	if (count == 0) return;
	if (count > LCODE_MAX_WORDS) {
		fprintf(stderr,
			"ERROR: Max. word count exceeded, truncating aw_fel_readl_n() transfer\n");
		count = LCODE_MAX_WORDS;
	}
512
	soc_info_t *soc_info = aw_fel_get_soc_info(usb);
513
514

	assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
515
	uint32_t arm_code[] = {
516
517
518
519
520
521
522
523
524
525
526
527
528
529
		htole32(0xe59f0020), /* ldr  r0, [pc, #32] ; ldr r0,[read_addr]  */
		htole32(0xe28f1024), /* add  r1, pc, #36   ; adr r1, read_data   */
		htole32(0xe59f201c), /* ldr  r2, [pc, #28] ; ldr r2,[read_count] */
		htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp	r2, #LCODE_MAX_WORDS */
		htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt	r2, #LCODE_MAX_WORDS */
		/* read_loop: */
		htole32(0xe2522001), /* subs r2, r2, #1    ; r2 -= 1             */
		htole32(0x412fff1e), /* bxmi lr            ; return if (r2 < 0)  */
		htole32(0xe4903004), /* ldr  r3, [r0], #4  ; load and post-inc   */
		htole32(0xe4813004), /* str  r3, [r1], #4  ; store and post-inc  */
		htole32(0xeafffffa), /* b    read_loop                           */
		htole32(addr),       /* read_addr */
		htole32(count)       /* read_count */
		/* read_data (buffer) follows, i.e. values go here */
530
	};
531
532
533
	assert(sizeof(arm_code) == LCODE_ARM_SIZE);

	/* scratch buffer setup: transfers ARM code, including addr and count */
534
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
535
536
537
538
539
540
541
542
543
	/* execute code, read back the result */
	aw_fel_execute(usb, soc_info->scratch_addr);
	uint32_t buffer[count];
	aw_fel_read(usb, soc_info->scratch_addr + LCODE_ARM_SIZE,
		    buffer, sizeof(buffer));
	/* extract values to destination buffer */
	uint32_t *val = buffer;
	while (count-- > 0)
		*dst++ = le32toh(*val++);
544
545
546
547
548
549
550
551
552
553
}

/* "readl" of a single value */
uint32_t aw_fel_readl(libusb_device_handle *usb, uint32_t addr)
{
	uint32_t val;
	aw_fel_readl_n(usb, addr, &val, 1);
	return val;
}

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/*
 * aw_fel_readl_n() wrapper that can handle large transfers. If necessary,
 * those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
 */
void fel_readl_n(libusb_device_handle *usb, uint32_t addr,
		 uint32_t *dst, size_t count)
{
	while (count > 0) {
		size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
		aw_fel_readl_n(usb, addr, dst, n);
		addr += n * sizeof(uint32_t);
		dst += n;
		count -= n;
	}
}

570
571
572
573
/* multiple "writel" from a source buffer to sequential addresses */
void aw_fel_writel_n(libusb_device_handle *usb, uint32_t addr,
		     uint32_t *src, size_t count)
{
574
575
576
577
578
579
	if (count == 0) return;
	if (count > LCODE_MAX_WORDS) {
		fprintf(stderr,
			"ERROR: Max. word count exceeded, truncating aw_fel_writel_n() transfer\n");
		count = LCODE_MAX_WORDS;
	}
580
	soc_info_t *soc_info = aw_fel_get_soc_info(usb);
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

	assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
	/*
	 * We need a fixed array size to allow for (partial) initialization,
	 * so we'll claim the maximum total number of words (0x100) here.
	 */
	uint32_t arm_code[LCODE_MAX_TOTAL] = {
		htole32(0xe59f0020), /* ldr  r0, [pc, #32] ; ldr r0,[write_addr] */
		htole32(0xe28f1024), /* add  r1, pc, #36   ; adr r1, write_data  */
		htole32(0xe59f201c), /* ldr  r2, [pc, #28] ; ldr r2,[write_count]*/
		htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp	r2, #LCODE_MAX_WORDS */
		htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt	r2, #LCODE_MAX_WORDS */
		/* write_loop: */
		htole32(0xe2522001), /* subs r2, r2, #1    ; r2 -= 1             */
		htole32(0x412fff1e), /* bxmi lr            ; return if (r2 < 0)  */
		htole32(0xe4913004), /* ldr  r3, [r1], #4  ; load and post-inc   */
		htole32(0xe4803004), /* str  r3, [r0], #4  ; store and post-inc  */
		htole32(0xeafffffa), /* b    write_loop                          */
		htole32(addr),       /* write_addr */
		htole32(count)       /* write_count */
		/* write_data (buffer) follows, i.e. values taken from here */
602
	};
603
604
605
606
607
608
609
610
611
612

	/* copy values from source buffer */
	size_t i;
	for (i = 0; i < count; i++)
		arm_code[LCODE_ARM_WORDS + i] = htole32(*src++);
	/* scratch buffer setup: transfers ARM code and data */
	aw_fel_write(usb, arm_code, soc_info->scratch_addr,
	             (LCODE_ARM_WORDS + count) * sizeof(uint32_t));
	/* execute, and we're done */
	aw_fel_execute(usb, soc_info->scratch_addr);
613
614
615
616
617
618
619
620
}

/* "writel" of a single value */
void aw_fel_writel(libusb_device_handle *usb, uint32_t addr, uint32_t val)
{
	aw_fel_writel_n(usb, addr, &val, 1);
}

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
/*
 * aw_fel_writel_n() wrapper that can handle large transfers. If necessary,
 * those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
 */
void fel_writel_n(libusb_device_handle *usb, uint32_t addr,
		  uint32_t *src, size_t count)
{
	while (count > 0) {
		size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
		aw_fel_writel_n(usb, addr, src, n);
		addr += n * sizeof(uint32_t);
		src += n;
		count -= n;
	}
}

637
638
void aw_fel_print_sid(libusb_device_handle *usb)
{
639
	soc_info_t *soc_info = aw_fel_get_soc_info(usb);
640
641
642
643
644
645
646
	if (soc_info->sid_addr) {
		pr_info("SID key (e-fuses) at 0x%08X\n", soc_info->sid_addr);

		uint32_t key[4];
		aw_fel_readl_n(usb, soc_info->sid_addr, key, 4);

		unsigned int i;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
647
		/* output SID in "xxxxxxxx:xxxxxxxx:xxxxxxxx:xxxxxxxx" format */
648
		for (i = 0; i <= 3; i++)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
649
			printf("%08x%c", key[i], i < 3 ? ':' : '\n');
650
651
652
653
654
655
	} else {
		printf("SID registers for your SoC (id=%04X) are unknown or inaccessible.\n",
			soc_info->soc_id);
	}
}

656
void aw_enable_l2_cache(libusb_device_handle *usb, soc_info_t *soc_info)
657
658
659
660
661
662
663
664
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

665
666
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, soc_info->scratch_addr);
667
668
}

669
void aw_get_stackinfo(libusb_device_handle *usb, soc_info_t *soc_info,
670
                      uint32_t *sp_irq, uint32_t *sp)
671
672
673
674
675
676
677
678
679
680
681
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

682
683
684
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, soc_info->scratch_addr);
	aw_fel_read(usb, soc_info->scratch_addr + 0x10, results, 8);
685
686
687
688
689
690
691
692
693
694
695
696
697
698
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

699
700
701
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, soc_info->scratch_addr);
	aw_fel_read(usb, soc_info->scratch_addr + 0x24, results, 8);
702
703
704
705
706
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

707
uint32_t aw_get_ttbr0(libusb_device_handle *usb, soc_info_t *soc_info)
708
{
709
	return aw_read_arm_cp_reg(usb, soc_info, 15, 0, 2, 0, 0);
710
711
}

712
uint32_t aw_get_ttbcr(libusb_device_handle *usb, soc_info_t *soc_info)
713
{
714
	return aw_read_arm_cp_reg(usb, soc_info, 15, 0, 2, 0, 2);
715
716
}

717
uint32_t aw_get_dacr(libusb_device_handle *usb, soc_info_t *soc_info)
718
{
719
	return aw_read_arm_cp_reg(usb, soc_info, 15, 0, 3, 0, 0);
720
721
}

722
uint32_t aw_get_sctlr(libusb_device_handle *usb, soc_info_t *soc_info)
723
{
724
	return aw_read_arm_cp_reg(usb, soc_info, 15, 0, 1, 0, 0);
725
726
}

727
void aw_set_ttbr0(libusb_device_handle *usb, soc_info_t *soc_info,
728
729
		  uint32_t ttbr0)
{
730
	return aw_write_arm_cp_reg(usb, soc_info, 15, 0, 2, 0, 0, ttbr0);
731
732
}

733
void aw_set_ttbcr(libusb_device_handle *usb, soc_info_t *soc_info,
734
735
		  uint32_t ttbcr)
{
736
	return aw_write_arm_cp_reg(usb, soc_info, 15, 0, 2, 0, 2, ttbcr);
737
738
}

739
void aw_set_dacr(libusb_device_handle *usb, soc_info_t *soc_info,
740
741
		 uint32_t dacr)
{
742
	aw_write_arm_cp_reg(usb, soc_info, 15, 0, 3, 0, 0, dacr);
743
744
}

745
void aw_set_sctlr(libusb_device_handle *usb, soc_info_t *soc_info,
746
747
		  uint32_t sctlr)
{
748
	aw_write_arm_cp_reg(usb, soc_info, 15, 0, 1, 0, 0, sctlr);
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
}

/*
 * Reconstruct the same MMU translation table as used by the A20 BROM.
 * We are basically reverting the changes, introduced in newer SoC
 * variants. This works fine for the SoC variants with the memory
 * layout similar to A20 (the SRAM is in the first megabyte of the
 * address space and the BROM is in the last megabyte of the address
 * space).
 */
uint32_t *aw_generate_mmu_translation_table(void)
{
	uint32_t *tt = malloc(4096 * sizeof(uint32_t));
	uint32_t i;

	/*
	 * Direct mapping using 1MB sections with TEXCB=00000 (Strongly
	 * ordered) for all memory except the first and the last sections,
	 * which have TEXCB=00100 (Normal). Domain bits are set to 1111
	 * and AP bits are set to 11, but this is mostly irrelevant.
	 */
	for (i = 0; i < 4096; i++)
		tt[i] = 0x00000DE2 | (i << 20);
	tt[0x000] |= 0x1000;
	tt[0xFFF] |= 0x1000;

	return tt;
}

778
uint32_t *aw_backup_and_disable_mmu(libusb_device_handle *usb,
779
                                    soc_info_t *soc_info)
780
{
781
	uint32_t *tt = NULL;
782
	uint32_t sctlr, ttbr0, ttbcr, dacr;
783
784
785
	uint32_t i;

	uint32_t arm_code[] = {
786
		/* Disable I-cache, MMU and branch prediction */
787
788
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
789
790
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
791
792
793
794
795
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

796
797
798
799
800
801
802
803
804
805
806
	/*
	 * Below are some checks for the register values, which are known
	 * to be initialized in this particular way by the existing BROM
	 * implementations. We don't strictly need them to exactly match,
	 * but still have these safety guards in place in order to detect
	 * and review any potential configuration changes in future SoC
	 * variants (if one of these checks fails, then it is not a serious
	 * problem but more likely just an indication that one of these
	 * checks needs to be relaxed).
	 */

807
	/* Basically, ignore M/Z/I/V/UNK bits and expect no TEX remap */
808
	sctlr = aw_get_sctlr(usb, soc_info);
809
	if ((sctlr & ~((0x7 << 11) | (1 << 6) | 1)) != 0x00C50038) {
810
811
812
813
		fprintf(stderr, "Unexpected SCTLR (%08X)\n", sctlr);
		exit(1);
	}

814
	if (!(sctlr & 1)) {
815
816
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
817
818
	}

819
	dacr = aw_get_dacr(usb, soc_info);
820
821
822
823
824
	if (dacr != 0x55555555) {
		fprintf(stderr, "Unexpected DACR (%08X)\n", dacr);
		exit(1);
	}

825
	ttbcr = aw_get_ttbcr(usb, soc_info);
826
827
	if (ttbcr != 0x00000000) {
		fprintf(stderr, "Unexpected TTBCR (%08X)\n", ttbcr);
828
829
830
		exit(1);
	}

831
	ttbr0 = aw_get_ttbr0(usb, soc_info);
832
833
834
835
836
	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

837
	tt = malloc(16 * 1024);
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
	aw_fel_read(usb, ttbr0, tt, 16 * 1024);
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

855
	pr_info("Disabling I-cache, MMU and branch prediction...");
856
857
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, soc_info->scratch_addr);
858
859
860
861
862
	pr_info(" done.\n");

	return tt;
}

863
void aw_restore_and_enable_mmu(libusb_device_handle *usb,
864
                               soc_info_t *soc_info,
865
                               uint32_t *tt)
866
867
{
	uint32_t i;
868
	uint32_t ttbr0 = aw_get_ttbr0(usb, soc_info);
869
870

	uint32_t arm_code[] = {
871
872
873
874
875
876
877
878
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
879
880
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
881
882
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
883
884
885
886
887
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

904
905
906
907
908
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
	aw_fel_write(usb, tt, ttbr0, 16 * 1024);

909
	pr_info("Enabling I-cache, MMU and branch prediction...");
910
911
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, soc_info->scratch_addr);
912
913
914
915
916
	pr_info(" done.\n");

	free(tt);
}

917
918
919
920
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
921
#define SPL_LEN_LIMIT 0x8000
922

923
924
925
void aw_fel_write_and_execute_spl(libusb_device_handle *usb,
				  uint8_t *buf, size_t len)
{
926
	soc_info_t *soc_info = aw_fel_get_soc_info(usb);
927
928
929
930
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
931
	uint32_t sp, sp_irq;
932
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
933
	uint32_t *buf32 = (uint32_t *)buf;
934
	uint32_t cur_addr = soc_info->spl_addr;
935
	uint32_t *tt = NULL;
936

937
	if (!soc_info || !soc_info->swap_buffers) {
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

964
	if (soc_info->needs_l2en) {
965
		pr_info("Enabling the L2 cache\n");
966
		aw_enable_l2_cache(usb, soc_info);
967
968
	}

969
	aw_get_stackinfo(usb, soc_info, &sp_irq, &sp);
970
971
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

972
973
974
	tt = aw_backup_and_disable_mmu(usb, soc_info);
	if (!tt && soc_info->mmu_tt_addr) {
		if (soc_info->mmu_tt_addr & 0x3FFF) {
975
976
977
978
			fprintf(stderr, "SPL: 'mmu_tt_addr' must be 16K aligned\n");
			exit(1);
		}
		pr_info("Generating the new MMU translation table at 0x%08X\n",
979
		        soc_info->mmu_tt_addr);
980
981
982
983
984
985
986
987
988
989
		/*
		 * These settings are used by the BROM in A10/A13/A20 and
		 * we replicate them here when enabling the MMU. The DACR
		 * value 0x55555555 means that accesses are checked against
		 * the permission bits in the translation tables for all
		 * domains. The TTBCR value 0x00000000 means that the short
		 * descriptor translation table format is used, TTBR0 is used
		 * for all the possible virtual addresses (N=0) and that the
		 * translation table must be aligned at a 16K boundary.
		 */
990
991
992
		aw_set_dacr(usb, soc_info, 0x55555555);
		aw_set_ttbcr(usb, soc_info, 0x00000000);
		aw_set_ttbr0(usb, soc_info, soc_info->mmu_tt_addr);
993
994
		tt = aw_generate_mmu_translation_table();
	}
995

996
	swap_buffers = soc_info->swap_buffers;
997
	for (i = 0; swap_buffers[i].size; i++) {
998
999
1000
		if ((swap_buffers[i].buf2 >= soc_info->spl_addr) &&
		    (swap_buffers[i].buf2 < soc_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - soc_info->spl_addr;
1001
1002
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
1003
1004
			if (tmp > len)
				tmp = len;
1005
1006
			aw_fel_write(usb, buf, cur_addr, tmp);
			cur_addr += tmp;
1007
1008
1009
			buf += tmp;
			len -= tmp;
		}
1010
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
1011
1012
1013
1014
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
			aw_fel_write(usb, buf, swap_buffers[i].buf2, tmp);
1015
			cur_addr += tmp;
1016
1017
1018
1019
1020
1021
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
1022
1023
	if (soc_info->thunk_addr < spl_len_limit)
		spl_len_limit = soc_info->thunk_addr;
1024
1025
1026
1027
1028
1029
1030
1031
1032

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
1033
		aw_fel_write(usb, buf, cur_addr, len);
1034

1035
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(soc_info->spl_addr) +
1036
		     (i + 1) * sizeof(*swap_buffers);
1037

1038
	if (thunk_size > soc_info->thunk_size) {
1039
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
1040
			(int)sizeof(fel_to_spl_thunk), soc_info->thunk_size);
1041
1042
1043
1044
1045
1046
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
1047
	       &soc_info->spl_addr, sizeof(soc_info->spl_addr));
1048
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
1049
1050
1051
1052
1053
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

1054
	pr_info("=> Executing the SPL...");
1055
1056
	aw_fel_write(usb, thunk_buf, soc_info->thunk_addr, thunk_size);
	aw_fel_execute(usb, soc_info->thunk_addr);
1057
	pr_info(" done.\n");
1058
1059
1060
1061
1062
1063
1064

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
1065
	aw_fel_read(usb, soc_info->spl_addr + 4, header_signature, 8);
1066
1067
1068
1069
1070
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
1071

1072
	/* re-enable the MMU if it was enabled by BROM */
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1073
	if (tt != NULL)
1074
		aw_restore_and_enable_mmu(usb, soc_info, tt);
1075
1076
}

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
void aw_fel_write_uboot_image(libusb_device_handle *usb,
		uint8_t *buf, size_t len)
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	uint32_t *buf32 = (uint32_t *)buf;

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
	/* Check for a valid mkimage header */
	int image_type = get_image_type(buf, len);
	if (image_type <= IH_TYPE_INVALID) {
		switch (image_type) {
		case IH_TYPE_INVALID:
			fprintf(stderr, "Invalid U-Boot image: bad size or signature\n");
			break;
		case IH_TYPE_ARCH_MISMATCH:
			fprintf(stderr, "Invalid U-Boot image: wrong architecture\n");
			break;
		default:
			fprintf(stderr, "Invalid U-Boot image: error code %d\n",
				image_type);
		}
1105
1106
		exit(1);
	}
1107
1108
1109
	if (image_type != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image type mismatch: "
			"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
1110
1111
1112
1113
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
1114
	if (data_size != len - HEADER_SIZE) {
1115
		fprintf(stderr, "U-Boot image data size mismatch: "
1116
			"expected %zu, got %u\n", len - HEADER_SIZE, data_size);
1117
1118
1119
1120
1121
1122
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1123
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.c
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

1135
	aw_write_buffer(usb, buf + HEADER_SIZE, load_addr, data_size, false);
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
void aw_fel_process_spl_and_uboot(libusb_device_handle *usb,
		const char *filename)
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
	aw_fel_write_and_execute_spl(usb, buf, size);
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
1154
1155
	if (size > SPL_LEN_LIMIT)
		aw_fel_write_uboot_image(usb, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
1156
	free(buf);
1157
1158
}

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
/*
 * Test the SPL header for our "sunxi" variant. We want to make sure that
 * we can safely use specific header fields to pass information to U-Boot.
 * In case of a missing signature (e.g. Allwinner boot0) or header version
 * mismatch, this function will return "false". If all seems fine,
 * the result is "true".
 */
#define SPL_SIGNATURE			"SPL" /* marks "sunxi" header */
#define SPL_MIN_VERSION			1 /* minimum required version */
#define SPL_MAX_VERSION			1 /* maximum supported version */
1169
bool have_sunxi_spl(libusb_device_handle *usb, uint32_t spl_addr)
1170
1171
1172
1173
1174
1175
1176
{
	uint8_t spl_signature[4];

	aw_fel_read(usb, spl_addr + 0x14,
		&spl_signature, sizeof(spl_signature));

	if (memcmp(spl_signature, SPL_SIGNATURE, 3) != 0)
1177
		return false; /* signature mismatch, no "sunxi" SPL */
1178
1179
1180
1181
1182
1183

	if (spl_signature[3] < SPL_MIN_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X < required minimum 0x%02X\n",
			spl_signature[3], SPL_MIN_VERSION);
		fprintf(stderr, "You need to update your U-Boot (mksunxiboot) to a more recent version.\n");
1184
		return false;
1185
1186
1187
1188
1189
1190
	}
	if (spl_signature[3] > SPL_MAX_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X > maximum supported 0x%02X\n",
			spl_signature[3], SPL_MAX_VERSION);
		fprintf(stderr, "You need a more recent version of this (sunxi-tools) fel utility.\n");
1191
		return false;
1192
	}
1193
	return true; /* sunxi SPL and suitable version */
1194
1195
1196
1197
}

/*
 * Pass information to U-Boot via specialized fields in the SPL header
1198
1199
 * (see "boot_file_head" in ${U-BOOT}/arch/arm/include/asm/arch-sunxi/spl.h),
 * providing the boot script address (DRAM location of boot.scr).
1200
 */
1201
1202
void pass_fel_information(libusb_device_handle *usb,
			  uint32_t script_address, uint32_t uEnv_length)
1203
{
1204
	soc_info_t *soc_info = aw_fel_get_soc_info(usb);
1205
1206

	/* write something _only_ if we have a suitable SPL header */
1207
	if (have_sunxi_spl(usb, soc_info->spl_addr)) {
1208
1209
1210
1211
1212
1213
1214
1215
		pr_info("Passing boot info via sunxi SPL: "
			"script address = 0x%08X, uEnv length = %u\n",
			script_address, uEnv_length);
		uint32_t transfer[] = {
			htole32(script_address),
			htole32(uEnv_length)
		};
		aw_fel_write(usb, transfer,
1216
			soc_info->spl_addr + 0x18, sizeof(transfer));
1217
1218
1219
	}
}

1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
static int aw_fel_get_endpoint(libusb_device_handle *usb)
{
	struct libusb_device *dev = libusb_get_device(usb);
	struct libusb_config_descriptor *config;
	int if_idx, set_idx, ep_idx, ret;

	ret = libusb_get_active_config_descriptor(dev, &config);
	if (ret)
		return ret;

	for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
		const struct libusb_interface *iface = config->interface + if_idx;

		for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
			const struct libusb_interface_descriptor *setting =
				iface->altsetting + set_idx;

			for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
				const struct libusb_endpoint_descriptor *ep =
					setting->endpoint + ep_idx;

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1241
				/* Test for bulk transfer endpoint */
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
				if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) !=
						LIBUSB_TRANSFER_TYPE_BULK)
					continue;

				if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
						LIBUSB_ENDPOINT_IN)
					AW_USB_FEL_BULK_EP_IN = ep->bEndpointAddress;
				else
					AW_USB_FEL_BULK_EP_OUT = ep->bEndpointAddress;
			}
		}
	}

	libusb_free_config_descriptor(config);

	return 0;
}

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
/*
 * This function stores a given entry point to the RVBAR address for CPU0,
 * and then writes the Reset Management Register to request a warm boot.
 * It is useful with some AArch64 transitions, e.g. when passing control to
 * ARM Trusted Firmware (ATF) during the boot process of Pine64.
 *
 * The code was inspired by
 * https://github.com/apritzel/u-boot/commit/fda6bd1bf285c44f30ea15c7e6231bf53c31d4a8
 */
void aw_rmr_request(libusb_device_handle *usb, uint32_t entry_point, bool aarch64)
{
1271
	soc_info_t *soc_info = aw_fel_get_soc_info(usb);
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
	if (!soc_info->rvbar_reg) {
		fprintf(stderr, "ERROR: Can't issue RMR request!\n"
			"RVBAR is not supported or unknown for your SoC (id=%04X).\n",
			soc_info->soc_id);
		return;
	}

	uint32_t rmr_mode = (1 << 1) | (aarch64 ? 1 : 0); /* RR, AA64 flag */
	uint32_t arm_code[] = {
		htole32(0xe59f0028), /* ldr        r0, [rvbar_reg]          */
		htole32(0xe59f1028), /* ldr        r1, [entry_point]        */
		htole32(0xe5801000), /* str        r1, [r0]                 */
		htole32(0xf57ff04f), /* dsb        sy                       */
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe59f101c), /* ldr        r1, [rmr_mode]           */
		htole32(0xee1c0f50), /* mrc        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xe1800001), /* orr        r0, r0, r1               */
		htole32(0xee0c0f50), /* mcr        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe320f003), /* loop:      wfi                      */
		htole32(0xeafffffd), /* b          <loop>                   */

		htole32(soc_info->rvbar_reg),
		htole32(entry_point),
		htole32(rmr_mode)
	};
	/* scratch buffer setup: transfers ARM code and parameter values */
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	/* execute the thunk code (triggering a warm reset on the SoC) */
	pr_info("Store entry point 0x%08X to RVBAR 0x%08X, "
		"and request warm reset with RMR mode %u...",
		entry_point, soc_info->rvbar_reg, rmr_mode);
	aw_fel_execute(usb, soc_info->scratch_addr);
	pr_info(" done.\n");
}

1310
1311
1312
1313
1314
1315
1316
1317
/* check buffer for magic "#=uEnv", indicating uEnv.txt compatible format */
static bool is_uEnv(void *buffer, size_t size)
{
	if (size <= 6)
		return false; /* insufficient size */
	return memcmp(buffer, "#=uEnv", 6) == 0;
}

1318
1319
/* private helper function, gets used for "write*" and "multi*" transfers */
static unsigned int file_upload(libusb_device_handle *handle, size_t count,
1320
				size_t argc, char **argv, progress_cb_t callback)
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
{
	if (argc < count * 2) {
		fprintf(stderr, "error: too few arguments for uploading %zu files\n",
			count);
		exit(1);
	}

	/* get all file sizes, keeping track of total bytes */
	size_t size = 0;
	unsigned int i;
	for (i = 0; i < count; i++)
		size += file_size(argv[i * 2 + 1]);

1334
	progress_start(callback, size); /* set total size and progress callback */
1335
1336
1337
1338
1339
1340

	/* now transfer each file in turn */
	for (i = 0; i < count; i++) {
		void *buf = load_file(argv[i * 2 + 1], &size);
		if (size > 0) {
			uint32_t offset = strtoul(argv[i * 2], NULL, 0);
1341
			aw_write_buffer(handle, buf, offset, size, callback != NULL);
1342

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1343
			/* If we transferred a script, try to inform U-Boot about its address. */
1344
			if (get_image_type(buf, size) == IH_TYPE_SCRIPT)
1345
1346
1347
				pass_fel_information(handle, offset, 0);
			if (is_uEnv(buf, size)) /* uEnv-style data */
				pass_fel_information(handle, offset, size);
1348
1349
1350
1351
		}
		free(buf);
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1352
	return i; /* return number of files that were processed */
1353
1354
}

1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
/* open libusb handle to desired FEL device */
static libusb_device_handle *open_fel_device(int busnum, int devnum,
		uint16_t vendor_id, uint16_t product_id)
{
	libusb_device_handle *result = NULL;

	if (busnum < 0 || devnum < 0) {
		/* With the default values (busnum -1, devnum -1) we don't care
		 * for a specific USB device; so let libusb open the first
		 * device that matches VID/PID.
		 */
		result = libusb_open_device_with_vid_pid(NULL, vendor_id, product_id);
		if (!result) {
			switch (errno) {
			case EACCES:
				fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
				break;
			default:
				fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
				break;
			}
			exit(1);
		}
		return result;
	}

	/* look for specific bus and device number */
	pr_info("Selecting USB Bus %03d Device %03d\n", busnum, devnum);
	bool found = false;
	ssize_t rc, i;
	libusb_device **list;

	rc = libusb_get_device_list(NULL, &list);
1388
1389
	if (rc < 0)
		usb_error(rc, "libusb_get_device_list()", 1);
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
	for (i = 0; i < rc; i++) {
		if (libusb_get_bus_number(list[i]) == busnum
		    && libusb_get_device_address(list[i]) == devnum) {
			found = true; /* bus:devnum matched */
			struct libusb_device_descriptor desc;
			libusb_get_device_descriptor(list[i], &desc);
			if (desc.idVendor != vendor_id
			    || desc.idProduct != product_id) {
				fprintf(stderr, "ERROR: Bus %03d Device %03d not a FEL device "
					"(expected %04x:%04x, got %04x:%04x)\n", busnum, devnum,
					vendor_id, product_id, desc.idVendor, desc.idProduct);
				exit(1);
			}
			/* open handle to this specific device (incrementing its refcount) */
			rc = libusb_open(list[i], &result);
1405
1406
			if (rc != 0)
				usb_error(rc, "libusb_open()", 1);
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
			break;
		}
	}
	libusb_free_device_list(list, true);

	if (!found) {
		fprintf(stderr, "ERROR: Bus %03d Device %03d not found in libusb device list\n",
			busnum, devnum);
		exit(1);
	}
	return result;
}

1420
1421
int main(int argc, char **argv)
{
1422
	bool uboot_autostart = false; /* flag for "uboot" command = U-Boot autostart */
1423
	bool pflag_active = false; /* -p switch, causing "write" to output progress */
1424
1425
	libusb_device_handle *handle;
	int busnum = -1, devnum = -1;
1426
#if defined(__linux__)
1427
	int iface_detached = -1;
1428
#endif
1429
1430

	if (argc <= 1) {
1431
		puts("sunxi-fel " VERSION "\n");
1432
1433
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
1434
			"	-p, --progress			\"write\" transfers show a progress bar\n"
1435
			"	-d, --dev bus:devnum		Use specific USB bus and device number\n"
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
1447
1448
1449
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
1450
			"	reset64 address			RMR request for AArch64 warm boot\n"
1451
1452
			"	readl address			Read 32-bit value from device memory\n"
			"	writel address value		Write 32-bit value to device memory\n"
1453
			"	read address length file	Write memory contents into file\n"
1454
			"	write address file		Store file contents into memory\n"
1455
			"	write-with-progress addr file	\"write\" with progress bar\n"
1456
1457
			"	write-with-gauge addr file	Output progress for \"dialog --gauge\"\n"
			"	write-with-xgauge addr file	Extended gauge output (updates prompt)\n"
1458
1459
			"	multi[write] # addr file ...	\"write-with-progress\" multiple files,\n"
			"					sharing a common progress status\n"
1460
1461
1462
			"	multi[write]-with-gauge ...	like their \"write-with-*\" counterpart,\n"
			"	multi[write]-with-xgauge ...	  but following the 'multi' syntax:\n"
			"					  <#> addr file [addr file [...]]\n"
1463
			"	echo-gauge \"some text\"		Update prompt/caption for gauge output\n"
1464
			"	ver[sion]			Show BROM version\n"
1465
			"	sid				Retrieve and output 128-bit SID key\n"
1466
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1467
			"	fill address length value	Fill memory\n"
1468
1469
			, argv[0]
		);
1470
		exit(0);
1471
1472
	}

1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
	/* process all "prefix"-type arguments first */
	while (argc > 1) {
		if (strcmp(argv[1], "--verbose") == 0 || strcmp(argv[1], "-v") == 0)
			verbose = true;
		else if (strcmp(argv[1], "--progress") == 0 || strcmp(argv[1], "-p") == 0)
			pflag_active = true;
		else if (strncmp(argv[1], "--dev", 5) == 0 || strncmp(argv[1], "-d", 2) == 0) {
			char *dev_arg = argv[1];
			dev_arg += strspn(dev_arg, "-dev="); /* skip option chars, ignore '=' */
			if (*dev_arg == 0 && argc > 2) { /* at end of argument, use the next one instead */
				dev_arg = argv[2];
				argc -= 1;
				argv += 1;
			}
			if (sscanf(dev_arg, "%d:%d", &busnum, &devnum) != 2
			    || busnum <= 0 || devnum <= 0) {
				fprintf(stderr, "ERROR: Expected 'bus:devnum', got '%s'.\n", dev_arg);
				exit(1);
			}
		} else
			break; /* no valid (prefix) option detected, exit loop */
		argc -= 1;
		argv += 1;
1496
	}
1497

1498
1499
	int rc = libusb_init(NULL);
	assert(rc == 0);
1500
1501
	handle = open_fel_device(busnum, devnum, AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
	assert(handle != NULL);
1502
	rc = libusb_claim_interface(handle, 0);
1503
1504
1505
1506
1507
1508
1509
#if defined(__linux__)
	if (rc != LIBUSB_SUCCESS) {
		libusb_detach_kernel_driver(handle, 0);
		iface_detached = 0;
		rc = libusb_claim_interface(handle, 0);
	}
#endif
1510
1511
	assert(rc == 0);

1512
1513
1514
1515
1516
	if (aw_fel_get_endpoint(handle)) {
		fprintf(stderr, "ERROR: Failed to get FEL mode endpoint addresses!\n");
		exit(1);
	}

1517
1518
	while (argc > 1 ) {
		int skip = 1;
1519

1520
		if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
1521
1522
1523
1524
1525
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1526
1527
1528
1529
1530
1531
		} else if (strcmp(argv[1], "readl") == 0 && argc > 2) {
			printf("0x%08x\n", aw_fel_readl(handle, strtoul(argv[2], NULL, 0)));
			skip = 2;
		} else if (strcmp(argv[1], "writel") == 0 && argc > 3) {
			aw_fel_writel(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1532
		} else if (strncmp(argv[1], "exe", 3) == 0 && argc > 2) {
1533
1534
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
1535
1536
1537
1538
1539
		} else if (strcmp(argv[1], "reset64") == 0 && argc > 2) {
			aw_rmr_request(handle, strtoul(argv[2], NULL, 0), true);
			/* Cancel U-Boot autostart, and stop processing args */
			uboot_autostart = false;
			break;
1540
		} else if (strncmp(argv[1], "ver", 3) == 0) {
1541
			aw_fel_print_version(handle);
1542
1543
		} else if (strcmp(argv[1], "sid") == 0) {
			aw_fel_print_sid(handle);
1544
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1545
1546
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
					pflag_active ? progress_bar : NULL);
1547
1548
1549
		} else if (strcmp(argv[1], "write-with-progress") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_bar);
1550
1551
1552
1553
1554
1555
		} else if (strcmp(argv[1], "write-with-gauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge);
		} else if (strcmp(argv[1], "write-with-xgauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge_xxx);
1556
1557
1558
1559
1560
		} else if ((strcmp(argv[1], "multiwrite") == 0 ||
			    strcmp(argv[1], "multi") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_bar);
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
		} else if ((strcmp(argv[1], "multiwrite-with-gauge") == 0 ||
			    strcmp(argv[1], "multi-with-gauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge);
		} else if ((strcmp(argv[1], "multiwrite-with-xgauge") == 0 ||
			    strcmp(argv[1], "multi-with-xgauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge_xxx);
1571
1572
1573
1574
		} else if ((strcmp(argv[1], "echo-gauge") == 0) && argc > 2) {
			skip = 2;
			printf("XXX\n0\n%s\nXXX\n", argv[2]);
			fflush(stdout);
1575
1576
1577
1578
1579
1580
1581
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1582
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1583
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1584
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1585
1586
1587
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1588
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1589
1590
1591
1592
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
1593
1594
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
1595
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1596
			skip=2;
1597
1598
1599
1600
1601
1602
1603
1604
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1605
	/* auto-start U-Boot if requested (by the "uboot" command) */
1606
	if (uboot_autostart) {
1607
1608
1609
1610
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1611
	libusb_release_interface(handle, 0);
1612
1613
1614
1615
#if defined(__linux__)
	if (iface_detached >= 0)
		libusb_attach_kernel_driver(handle, iface_detached);
#endif
1616
1617
	libusb_close(handle);
	libusb_exit(NULL);
1618

1619
1620
	return 0;
}