fel.c 57.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <libusb.h>
#include <stdint.h>
20
#include <stdbool.h>
21
22
23
24
25
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
26
#include <stdarg.h>
27
#include <errno.h>
28
#include <unistd.h>
29
#include <sys/stat.h>
30

31
#include "common.h"
32
#include "portable_endian.h"
33
#include "progress.h"
Eric Molitor's avatar
Eric Molitor committed
34

35
36
37
static const uint16_t AW_USB_VENDOR_ID  = 0x1F3A;
static const uint16_t AW_USB_PRODUCT_ID = 0xEFE8;

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/* a helper function to report libusb errors */
void usb_error(int rc, const char *caption, int exitcode)
{
	if (caption)
		fprintf(stderr, "%s ", caption);

#if defined(LIBUSBX_API_VERSION) && (LIBUSBX_API_VERSION >= 0x01000102)
	fprintf(stderr, "ERROR %d: %s\n", rc, libusb_strerror(rc));
#else
	/* assume that libusb_strerror() is missing in the libusb API */
	fprintf(stderr, "ERROR %d\n", rc);
#endif

	if (exitcode != 0)
		exit(exitcode);
}

55
56
57
58
59
60
61
62
63
struct  aw_usb_request {
	char signature[8];
	uint32_t length;
	uint32_t unknown1;	/* 0x0c000000 */
	uint16_t request;
	uint32_t length2;	/* Same as length */
	char	pad[10];
}  __attribute__((packed));

64
65
66
67
68
69
70
71
72
73
74
struct aw_fel_version {
	char signature[8];
	uint32_t soc_id;	/* 0x00162300 */
	uint32_t unknown_0a;	/* 1 */
	uint16_t protocol;	/* 1 */
	uint8_t  unknown_12;	/* 0x44 */
	uint8_t  unknown_13;	/* 0x08 */
	uint32_t scratchpad;	/* 0x7e00 */
	uint32_t pad[2];	/* unused */
} __attribute__((packed));

75
76
77
static const int AW_USB_READ = 0x11;
static const int AW_USB_WRITE = 0x12;

78
79
static int AW_USB_FEL_BULK_EP_OUT;
static int AW_USB_FEL_BULK_EP_IN;
80
static int timeout = 60000;
81
static bool verbose = false; /* If set, makes the 'fel' tool more talkative */
82
83
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
84
85
86
87
88
89
90
91
92
93

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
94

Bernhard Nortmann's avatar
Bernhard Nortmann committed
95
static const int AW_USB_MAX_BULK_SEND = 4 * 1024 * 1024; /* 4 MiB per bulk request */
96

97
98
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
		   size_t length, bool progress)
99
{
100
101
102
103
104
105
	/*
	 * With no progress notifications, we'll use the maximum chunk size.
	 * Otherwise, it's useful to lower the size (have more chunks) to get
	 * more frequent status updates. 128 KiB per request seem suitable.
	 */
	size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
106
107

	size_t chunk;
108
109
	int rc, sent;
	while (length > 0) {
110
111
		chunk = length < max_chunk ? length : max_chunk;
		rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk, &sent, timeout);
112
113
		if (rc != 0)
			usb_error(rc, "usb_bulk_send()", 2);
114
115
		length -= sent;
		data += sent;
116
117

		if (progress)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
118
			progress_update(sent); /* notification after each chunk */
119
120
121
122
123
124
125
	}
}

void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
	int rc, recv;
	while (length > 0) {
126
		rc = libusb_bulk_transfer(usb, ep, data, length, &recv, timeout);
127
128
		if (rc != 0)
			usb_error(rc, "usb_bulk_recv()", 2);
129
130
131
132
133
		length -= recv;
		data += recv;
	}
}

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_INVALID		0	/* Invalid Image	*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_TYPE_SCRIPT		6	/* Script file		*/
#define IH_NMLEN		32	/* Image Name Length	*/

/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH	-1

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * Utility function to determine the image type from a mkimage-compatible
 * header at given buffer (address).
 *
 * For invalid headers (insufficient size or 'magic' mismatch) the function
 * will return IH_TYPE_INVALID. Negative return values might indicate
 * special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
 * image doesn't match the expected (ARM) architecture.
 * Otherwise the function will return the "ih_type" field for valid headers.
 */
int get_image_type(const uint8_t *buf, size_t len)
{
	uint32_t *buf32 = (uint32_t *)buf;

	if (len <= HEADER_SIZE) /* insufficient length/size */
		return IH_TYPE_INVALID;
	if (be32toh(buf32[0]) != IH_MAGIC) /* signature mismatch */
		return IH_TYPE_INVALID;
	/* For sunxi, we always expect ARM architecture here */
	if (buf[29] != IH_ARCH_ARM)
		return IH_TYPE_ARCH_MISMATCH;

	/* assume a valid header, and return ih_type */
	return buf[30];
}

174
175
void aw_send_usb_request(libusb_device_handle *usb, int type, int length)
{
176
177
178
179
180
181
182
	struct aw_usb_request req = {
		.signature = "AWUC",
		.request = htole16(type),
		.length = htole32(length),
		.unknown1 = htole32(0x0c000000)
	};
	req.length2 = req.length;
183
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, &req, sizeof(req), false);
184
185
186
187
188
189
190
191
192
}

void aw_read_usb_response(libusb_device_handle *usb)
{
	char buf[13];
	usb_bulk_recv(usb, AW_USB_FEL_BULK_EP_IN, &buf, sizeof(buf));
	assert(strcmp(buf, "AWUS") == 0);
}

193
194
void aw_usb_write(libusb_device_handle *usb, const void *data, size_t len,
		  bool progress)
195
196
{
	aw_send_usb_request(usb, AW_USB_WRITE, len);
197
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_OUT, data, len, progress);
198
199
200
201
202
203
	aw_read_usb_response(usb);
}

void aw_usb_read(libusb_device_handle *usb, const void *data, size_t len)
{
	aw_send_usb_request(usb, AW_USB_READ, len);
204
	usb_bulk_send(usb, AW_USB_FEL_BULK_EP_IN, data, len, false);
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
	aw_read_usb_response(usb);
}

struct aw_fel_request {
	uint32_t request;
	uint32_t address;
	uint32_t length;
	uint32_t pad;
};

static const int AW_FEL_VERSION = 0x001;
static const int AW_FEL_1_WRITE = 0x101;
static const int AW_FEL_1_EXEC  = 0x102;
static const int AW_FEL_1_READ  = 0x103;

void aw_send_fel_request(libusb_device_handle *usb, int type, uint32_t addr, uint32_t length)
{
222
223
224
225
226
	struct aw_fel_request req = {
		.request = htole32(type),
		.address = htole32(addr),
		.length = htole32(length)
	};
227
	aw_usb_write(usb, &req, sizeof(req), false);
228
229
230
231
232
233
234
235
}

void aw_read_fel_status(libusb_device_handle *usb)
{
	char buf[8];
	aw_usb_read(usb, &buf, sizeof(buf));
}

236
void aw_fel_get_version(libusb_device_handle *usb, struct aw_fel_version *buf)
237
238
{
	aw_send_fel_request(usb, AW_FEL_VERSION, 0, 0);
239
	aw_usb_read(usb, buf, sizeof(*buf));
240
241
	aw_read_fel_status(usb);

242
243
244
245
246
247
248
249
250
251
252
253
	buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
	buf->unknown_0a = le32toh(buf->unknown_0a);
	buf->protocol = le32toh(buf->protocol);
	buf->scratchpad = le16toh(buf->scratchpad);
	buf->pad[0] = le32toh(buf->pad[0]);
	buf->pad[1] = le32toh(buf->pad[1]);
}

void aw_fel_print_version(libusb_device_handle *usb)
{
	struct aw_fel_version buf;
	aw_fel_get_version(usb, &buf);
254

Henrik Nordstrom's avatar
Henrik Nordstrom committed
255
	const char *soc_name="unknown";
256
	switch (buf.soc_id) {
Bernhard Nortmann's avatar
Bernhard Nortmann committed
257
258
259
260
261
	case 0x1623: soc_name="A10"; break;
	case 0x1625: soc_name="A13"; break;
	case 0x1633: soc_name="A31"; break;
	case 0x1651: soc_name="A20"; break;
	case 0x1650: soc_name="A23"; break;
262
	case 0x1689: soc_name="A64"; break;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
263
264
265
266
	case 0x1639: soc_name="A80"; break;
	case 0x1667: soc_name="A33"; break;
	case 0x1673: soc_name="A83T"; break;
	case 0x1680: soc_name="H3"; break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
267
268
	}

269
270
271
272
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
273
274
275
276
277
278
279
280
281
282
283
284
}

void aw_fel_read(libusb_device_handle *usb, uint32_t offset, void *buf, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_READ, offset, len);
	aw_usb_read(usb, buf, len);
	aw_read_fel_status(usb);
}

void aw_fel_write(libusb_device_handle *usb, void *buf, uint32_t offset, size_t len)
{
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
285
	aw_usb_write(usb, buf, len, false);
286
287
288
289
290
291
292
293
294
	aw_read_fel_status(usb);
}

void aw_fel_execute(libusb_device_handle *usb, uint32_t offset)
{
	aw_send_fel_request(usb, AW_FEL_1_EXEC, offset, 0);
	aw_read_fel_status(usb);
}

295
296
297
298
299
300
301
302
/*
 * This function is a higher-level wrapper for the FEL write functionality.
 * Unlike aw_fel_write() above - which is reserved for internal use - this
 * routine is meant to be called from "user" code, and supports (= allows)
 * progress callbacks.
 * The return value represents elapsed time in seconds (needed for execution).
 */
double aw_write_buffer(libusb_device_handle *usb, void *buf, uint32_t offset,
303
		       size_t len, bool progress)
304
305
306
307
308
309
310
{
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size
			   && offset + len >= uboot_entry)
	{
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
311
			offset, (uint32_t)(offset + len),
312
313
314
315
316
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
	double start = gettime();
	aw_send_fel_request(usb, AW_FEL_1_WRITE, offset, len);
317
	aw_usb_write(usb, buf, len, progress);
318
319
320
321
	aw_read_fel_status(usb);
	return gettime() - start;
}

322
323
324
325
326
327
328
329
void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
		printf("%08lx: ",(long int)offset + j);
		for (i = 0; i < 16; i++) {
330
			if (j + i < size)
331
				printf("%02x ", buf[j+i]);
332
			else
333
334
				printf("__ ");
		}
335
		putchar(' ');
336
		for (i = 0; i < 16; i++) {
337
338
339
340
			if (j + i >= size)
				putchar('.');
			else
				putchar(isprint(buf[j+i]) ? buf[j+i] : '.');
341
		}
342
		putchar('\n');
343
344
	}
}
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
unsigned int file_size(const char *filename)
{
	struct stat st;
	if (stat(filename, &st) != 0) {
		fprintf(stderr, "stat() error on file \"%s\": %s\n", filename,
			strerror(errno));
		exit(1);
	}
	if (!S_ISREG(st.st_mode)) {
		fprintf(stderr, "error: \"%s\" is not a regular file\n", filename);
		exit(1);
	}
	return st.st_size;
}

361
362
363
364
int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
365
	if (!out) {
366
		perror("Failed to open output file");
367
368
		exit(1);
	}
369
370
371
372
373
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

374
375
376
377
378
379
380
381
382
383
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
384
	if (!in) {
385
		perror("Failed to open input file");
386
387
		exit(1);
	}
388
	
Bernhard Nortmann's avatar
Bernhard Nortmann committed
389
	while (true) {
390
391
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
392
		offset += n;
393
		if (n < len)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

void aw_fel_hexdump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	hexdump(buf, offset, size);
}

void aw_fel_dump(libusb_device_handle *usb, uint32_t offset, size_t size)
{
	unsigned char buf[size];
	aw_fel_read(usb, offset, buf, size);
	fwrite(buf, size, 1, stdout);
}
Henrik Nordstrom's avatar
Henrik Nordstrom committed
418
void aw_fel_fill(libusb_device_handle *usb, uint32_t offset, size_t size, unsigned char value)
419
420
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
421
	memset(buf, value, size);
422
	aw_write_buffer(usb, buf, offset, size, false);
423
424
}

425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/*
 * The 'sram_swap_buffers' structure is used to describe information about
 * two buffers in SRAM, the content of which needs to be exchanged before
 * calling the U-Boot SPL code and then exchanged again before returning
 * control back to the FEL code from the BROM.
 */

typedef struct {
	uint32_t buf1; /* BROM buffer */
	uint32_t buf2; /* backup storage location */
	uint32_t size; /* buffer size */
} sram_swap_buffers;

/*
 * Each SoC variant may have its own list of memory buffers to be exchanged
 * and the information about the placement of the thunk code, which handles
 * the transition of execution from the BROM FEL code to the U-Boot SPL and
 * back.
 *
 * Note: the entries in the 'swap_buffers' tables need to be sorted by 'buf1'
 * addresses. And the 'buf1' addresses are the BROM data buffers, while 'buf2'
 * addresses are the intended backup locations.
447
448
449
450
451
452
453
454
455
456
457
458
 *
 * Also for performance reasons, we optionally want to have MMU enabled with
 * optimal section attributes configured (the code from the BROM should use
 * I-cache, writing data to the DRAM area should use write combining). The
 * reason is that the BROM FEL protocol implementation moves data using the
 * CPU somewhere on the performance critical path when transferring data over
 * USB. The older SoC variants (A10/A13/A20/A31/A23) already have MMU enabled
 * and we only need to adjust section attributes. The BROM in newer SoC variants
 * (A33/A83T/H3) doesn't enable MMU anymore, so we need to find some 16K of
 * spare space in SRAM to place the translation table there and specify it as
 * the 'mmu_tt_addr' field in the 'soc_sram_info' structure. The 'mmu_tt_addr'
 * address must be 16K aligned.
459
460
 */
typedef struct {
461
	uint32_t           soc_id;       /* ID of the SoC */
462
	uint32_t           spl_addr;     /* SPL load address */
463
464
465
	uint32_t           scratch_addr; /* A safe place to upload & run code */
	uint32_t           thunk_addr;   /* Address of the thunk code */
	uint32_t           thunk_size;   /* Maximal size of the thunk code */
466
	bool               needs_l2en;   /* Set the L2EN bit */
467
	uint32_t           mmu_tt_addr;  /* MMU translation table address */
468
	uint32_t           sid_addr;     /* base address for SID_KEY[0-3] registers */
469
	uint32_t           rvbar_reg;    /* MMIO address of RVBARADDR0_L register */
470
471
472
473
474
475
476
477
	sram_swap_buffers *swap_buffers;
} soc_sram_info;

/*
 * The FEL code from BROM in A10/A13/A20 sets up two stacks for itself. One
 * at 0x2000 (and growing down) for the IRQ handler. And another one at 0x7000
 * (and also growing down) for the regular code. In order to use the whole
 * 32 KiB in the A1/A2 sections of SRAM, we need to temporarily move these
478
479
480
 * stacks elsewhere. And the addresses 0x7D00-0x7FFF contain something
 * importantant too (overwriting them kills FEL). On A10/A13/A20 we can use
 * the SRAM sections A3/A4 (0x8000-0xBFFF) for this purpose.
481
482
 */
sram_swap_buffers a10_a13_a20_sram_swap_buffers[] = {
483
484
485
486
487
488
	/* 0x1C00-0x1FFF (IRQ stack) */
	{ .buf1 = 0x01C00, .buf2 = 0xA400, .size = 0x0400 },
	/* 0x5C00-0x6FFF (Stack) */
	{ .buf1 = 0x05C00, .buf2 = 0xA800, .size = 0x1400 },
	/* 0x7C00-0x7FFF (Something important) */
	{ .buf1 = 0x07C00, .buf2 = 0xBC00, .size = 0x0400 },
489
	{ .size = 0 }  /* End of the table */
490
491
};

492
493
494
495
496
497
498
499
500
501
502
503
504
/*
 * A31 is very similar to A10/A13/A20, except that it has no SRAM at 0x8000.
 * So we use the SRAM section B at 0x20000-0x2FFFF instead. In the FEL mode,
 * the MMU translation table is allocated by the BROM at 0x20000. But we can
 * also safely use it as the backup storage because the MMU is temporarily
 * disabled during the time of the SPL execution.
 */
sram_swap_buffers a31_sram_swap_buffers[] = {
	{ .buf1 = 0x01800, .buf2 = 0x20000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x20800, .size = 0x8000 - 0x5C00 },
	{ .size = 0 }  /* End of the table */
};

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
/*
 * A64 has 32KiB of SRAM A at 0x10000 and a large SRAM C at 0x18000. SRAM A
 * and SRAM C reside in the address space back-to-back without any gaps, thus
 * representing a singe large contiguous area. Everything is the same as on
 * A10/A13/A20, but just shifted by 0x10000.
 */
sram_swap_buffers a64_sram_swap_buffers[] = {
	/* 0x11C00-0x11FFF (IRQ stack) */
	{ .buf1 = 0x11C00, .buf2 = 0x1A400, .size = 0x0400 },
	/* 0x15C00-0x16FFF (Stack) */
	{ .buf1 = 0x15C00, .buf2 = 0x1A800, .size = 0x1400 },
	/* 0x17C00-0x17FFF (Something important) */
	{ .buf1 = 0x17C00, .buf2 = 0x1BC00, .size = 0x0400 },
	{ .size = 0 }  /* End of the table */
};

521
/*
522
523
524
 * Use the SRAM section at 0x44000 as the backup storage. This is the memory,
 * which is normally shared with the OpenRISC core (should we do an extra check
 * to ensure that this core is powered off and can't interfere?).
525
 */
526
sram_swap_buffers ar100_abusing_sram_swap_buffers[] = {
527
528
	{ .buf1 = 0x01800, .buf2 = 0x44000, .size = 0x800 },
	{ .buf1 = 0x05C00, .buf2 = 0x44800, .size = 0x8000 - 0x5C00 },
529
	{ .size = 0 }  /* End of the table */
530
531
};

532
533
534
535
536
537
538
/*
 * A80 has 40KiB SRAM A1 at 0x10000 where the SPL has to be loaded to. The
 * secure SRAM B at 0x20000 is used as backup area for FEL stacks and data.
 */
sram_swap_buffers a80_sram_swap_buffers[] = {
	{ .buf1 = 0x11800, .buf2 = 0x20000, .size = 0x800 },
	{ .buf1 = 0x15400, .buf2 = 0x20800, .size = 0x18000 - 0x15400 },
539
	{ .size = 0 }  /* End of the table */
540
541
};

542
543
544
soc_sram_info soc_sram_info_table[] = {
	{
		.soc_id       = 0x1623, /* Allwinner A10 */
545
		.scratch_addr = 0x1000,
546
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
547
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
548
		.needs_l2en   = true,
549
		.sid_addr     = 0x01C23800,
550
551
552
	},
	{
		.soc_id       = 0x1625, /* Allwinner A13 */
553
		.scratch_addr = 0x1000,
554
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
555
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
556
		.needs_l2en   = true,
557
		.sid_addr     = 0x01C23800,
558
559
560
	},
	{
		.soc_id       = 0x1651, /* Allwinner A20 */
561
		.scratch_addr = 0x1000,
562
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
563
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
564
		.sid_addr     = 0x01C23800,
565
	},
Hans de Goede's avatar
Hans de Goede committed
566
567
	{
		.soc_id       = 0x1650, /* Allwinner A23 */
568
		.scratch_addr = 0x1000,
Hans de Goede's avatar
Hans de Goede committed
569
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
570
		.swap_buffers = ar100_abusing_sram_swap_buffers,
571
		.sid_addr     = 0x01C23800,
Hans de Goede's avatar
Hans de Goede committed
572
	},
573
574
	{
		.soc_id       = 0x1633, /* Allwinner A31 */
575
		.scratch_addr = 0x1000,
576
577
		.thunk_addr   = 0x22E00, .thunk_size = 0x200,
		.swap_buffers = a31_sram_swap_buffers,
578
	},
579
580
	{
		.soc_id       = 0x1667, /* Allwinner A33 */
581
		.scratch_addr = 0x1000,
582
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
583
		.swap_buffers = ar100_abusing_sram_swap_buffers,
584
		.sid_addr     = 0x01C23800,
585
	},
586
587
588
589
590
591
592
	{
		.soc_id       = 0x1689, /* Allwinner A64 */
		.spl_addr     = 0x10000,
		.scratch_addr = 0x11000,
		.thunk_addr   = 0x1A200, .thunk_size = 0x200,
		.swap_buffers = a64_sram_swap_buffers,
		.sid_addr     = 0x01C14200,
593
		.rvbar_reg    = 0x017000A0,
594
	},
595
596
	{
		.soc_id       = 0x1673, /* Allwinner A83T */
597
		.scratch_addr = 0x1000,
598
		.thunk_addr   = 0x46E00, .thunk_size = 0x200,
599
		.swap_buffers = ar100_abusing_sram_swap_buffers,
600
		.sid_addr     = 0x01C14200,
601
	},
602
603
	{
		.soc_id       = 0x1680, /* Allwinner H3 */
604
		.scratch_addr = 0x1000,
605
606
607
		.mmu_tt_addr  = 0x8000,
		.thunk_addr   = 0xA200, .thunk_size = 0x200,
		.swap_buffers = a10_a13_a20_sram_swap_buffers,
608
		.sid_addr     = 0x01C14200,
609
	},
610
611
612
	{
		.soc_id       = 0x1639, /* Allwinner A80 */
		.spl_addr     = 0x10000,
613
		.scratch_addr = 0x11000,
614
615
616
		.thunk_addr   = 0x23400, .thunk_size = 0x200,
		.swap_buffers = a80_sram_swap_buffers,
	},
617
	{ .swap_buffers = NULL } /* End of the table */
618
619
620
621
622
623
624
625
626
627
628
629
630
631
};

/*
 * This generic record assumes BROM with similar properties to A10/A13/A20/A31,
 * but no extra SRAM sections beyond 0x8000. It also assumes that the IRQ
 * handler stack usage never exceeds 0x400 bytes.
 *
 * The users may or may not hope that the 0x7000-0x8000 area is also unused
 * by the BROM and re-purpose it for the SPL stack.
 *
 * The size limit for the ".text + .data" sections is ~21 KiB.
 */
sram_swap_buffers generic_sram_swap_buffers[] = {
	{ .buf1 = 0x01C00, .buf2 = 0x5800, .size = 0x400 },
632
	{ .size = 0 }  /* End of the table */
633
634
635
};

soc_sram_info generic_sram_info = {
636
	.scratch_addr = 0x1000,
637
638
639
640
641
642
	.thunk_addr   = 0x5680, .thunk_size = 0x180,
	.swap_buffers = generic_sram_swap_buffers,
};

soc_sram_info *aw_fel_get_sram_info(libusb_device_handle *usb)
{
643
644
645
646
647
648
649
650
651
652
653
654
655
	/* persistent sram_info, retrieves result pointer once and caches it */
	static soc_sram_info *result = NULL;
	if (result == NULL) {
		int i;

		struct aw_fel_version buf;
		aw_fel_get_version(usb, &buf);

		for (i = 0; soc_sram_info_table[i].swap_buffers; i++)
			if (soc_sram_info_table[i].soc_id == buf.soc_id) {
				result = &soc_sram_info_table[i];
				break;
			}
656

657
658
659
660
661
662
663
		if (!result) {
			printf("Warning: no 'soc_sram_info' data for your SoC (id=%04X)\n",
			       buf.soc_id);
			result = &generic_sram_info;
		}
	}
	return result;
664
665
666
667
668
669
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

670
671
672
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
uint32_t aw_read_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			    uint32_t coproc, uint32_t opc1, uint32_t crn,
			    uint32_t crm, uint32_t opc2)
{
	uint32_t val = 0;
	uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)    |
			  ((crn & 15) << 16)    |
			  ((coproc & 15) << 8)  |
			  ((opc2 & 7) << 5)     |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(opcode),     /* mrc  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xe58f0000), /* str  r0, [pc]                         */
		htole32(0xe12fff1e), /* bx   lr                               */
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 12, &val, sizeof(val));
	return le32toh(val);
}

void aw_write_arm_cp_reg(libusb_device_handle *usb, soc_sram_info *sram_info,
			 uint32_t coproc, uint32_t opc1, uint32_t crn,
			 uint32_t crm, uint32_t opc2, uint32_t val)
{
	uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)                |
			  ((crn & 15) << 16)                |
			  ((coproc & 15) << 8)              |
			  ((opc2 & 7) << 5)                 |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(0xe59f000c), /* ldr  r0, [pc, #12]                    */
		htole32(opcode),     /* mcr  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xf57ff04f), /* dsb  sy                               */
		htole32(0xf57ff06f), /* isb  sy                               */
		htole32(0xe12fff1e), /* bx   lr                               */
		htole32(val)
	};
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
}

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/* multiple "readl" from sequential addresses to a destination buffer */
void aw_fel_readl_n(libusb_device_handle *usb, uint32_t addr,
		    uint32_t *dst, size_t count)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	uint32_t val;
	uint32_t arm_code[] = {
		htole32(0xe59f0010), /* ldr        r0, [pc, #16]            */
		htole32(0xe5901000), /* ldr        r1, [r0]                 */
		htole32(0xe58f100c), /* str        r1, [pc, #12]            */
		htole32(0xe2800004), /* add        r0, r0, #4               */
		htole32(0xe58f0000), /* str        r0, [pc]                 */
		htole32(0xe12fff1e), /* bx         lr                       */
		htole32(addr),
		/* value goes here */
	};
	/* scratch buffer setup: transfers ARM code and also sets the addr */
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	while (count-- > 0) {
		/*
		 * Since the scratch code auto-increments addr, we can simply
		 * execute it repeatedly for sequential "readl"s; retrieving
		 * one uint32_t each time.
		 */
		aw_fel_execute(usb, sram_info->scratch_addr);
		aw_fel_read(usb, sram_info->scratch_addr + 28, &val, sizeof(val));
		*dst++ = le32toh(val);
	}
}

/* "readl" of a single value */
uint32_t aw_fel_readl(libusb_device_handle *usb, uint32_t addr)
{
	uint32_t val;
	aw_fel_readl_n(usb, addr, &val, 1);
	return val;
}

/* multiple "writel" from a source buffer to sequential addresses */
void aw_fel_writel_n(libusb_device_handle *usb, uint32_t addr,
		     uint32_t *src, size_t count)
{
	if (count == 0) return; /* on zero count, do not access *src at all */

	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	uint32_t arm_code[] = {
		htole32(0xe59f0010), /* ldr        r0, [pc, #16]            */
		htole32(0xe59f1010), /* ldr        r1, [pc, #16]            */
		htole32(0xe5801000), /* str        r1, [r0]                 */
		htole32(0xe2800004), /* add        r0, r0, #4               */
		htole32(0xe58f0000), /* str        r0, [pc]                 */
		htole32(0xe12fff1e), /* bx         lr                       */
		htole32(addr),
		htole32(*src++)
	};
	/* scratch buffer setup: transfers ARM code, addr and first value */
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr); /* stores first value */
	while (--count > 0) {
		/*
		 * Subsequent transfers only need to set up the next value
		 * to store (since the scratch code auto-increments addr).
		 */
780
781
		uint32_t val = htole32(*src++);
		aw_fel_write(usb, &val, sram_info->scratch_addr + 28, sizeof(val));
782
783
784
785
786
787
788
789
790
791
		aw_fel_execute(usb, sram_info->scratch_addr);
	}
}

/* "writel" of a single value */
void aw_fel_writel(libusb_device_handle *usb, uint32_t addr, uint32_t val)
{
	aw_fel_writel_n(usb, addr, &val, 1);
}

792
793
794
795
796
797
798
799
800
801
void aw_fel_print_sid(libusb_device_handle *usb)
{
	soc_sram_info *soc_info = aw_fel_get_sram_info(usb);
	if (soc_info->sid_addr) {
		pr_info("SID key (e-fuses) at 0x%08X\n", soc_info->sid_addr);

		uint32_t key[4];
		aw_fel_readl_n(usb, soc_info->sid_addr, key, 4);

		unsigned int i;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
802
		/* output SID in "xxxxxxxx:xxxxxxxx:xxxxxxxx:xxxxxxxx" format */
803
		for (i = 0; i <= 3; i++)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
804
			printf("%08x%c", key[i], i < 3 ? ':' : '\n');
805
806
807
808
809
810
	} else {
		printf("SID registers for your SoC (id=%04X) are unknown or inaccessible.\n",
			soc_info->soc_id);
	}
}

811
void aw_enable_l2_cache(libusb_device_handle *usb, soc_sram_info *sram_info)
812
813
814
815
816
817
818
819
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

820
821
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
822
823
}

824
825
void aw_get_stackinfo(libusb_device_handle *usb, soc_sram_info *sram_info,
                      uint32_t *sp_irq, uint32_t *sp)
826
827
828
829
830
831
832
833
834
835
836
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

837
838
839
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x10, results, 8);
840
841
842
843
844
845
846
847
848
849
850
851
852
853
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

854
855
856
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
	aw_fel_read(usb, sram_info->scratch_addr + 0x24, results, 8);
857
858
859
860
861
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

862
uint32_t aw_get_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info)
863
{
864
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0);
865
866
}

867
868
869
870
871
872
873
874
875
876
uint32_t aw_get_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2);
}

uint32_t aw_get_dacr(libusb_device_handle *usb, soc_sram_info *sram_info)
{
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0);
}

877
uint32_t aw_get_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info)
878
{
879
	return aw_read_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0);
880
881
}

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
void aw_set_ttbr0(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbr0)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 0, ttbr0);
}

void aw_set_ttbcr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t ttbcr)
{
	return aw_write_arm_cp_reg(usb, sram_info, 15, 0, 2, 0, 2, ttbcr);
}

void aw_set_dacr(libusb_device_handle *usb, soc_sram_info *sram_info,
		 uint32_t dacr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 3, 0, 0, dacr);
}

void aw_set_sctlr(libusb_device_handle *usb, soc_sram_info *sram_info,
		  uint32_t sctlr)
{
	aw_write_arm_cp_reg(usb, sram_info, 15, 0, 1, 0, 0, sctlr);
}

/*
 * Reconstruct the same MMU translation table as used by the A20 BROM.
 * We are basically reverting the changes, introduced in newer SoC
 * variants. This works fine for the SoC variants with the memory
 * layout similar to A20 (the SRAM is in the first megabyte of the
 * address space and the BROM is in the last megabyte of the address
 * space).
 */
uint32_t *aw_generate_mmu_translation_table(void)
{
	uint32_t *tt = malloc(4096 * sizeof(uint32_t));
	uint32_t i;

	/*
	 * Direct mapping using 1MB sections with TEXCB=00000 (Strongly
	 * ordered) for all memory except the first and the last sections,
	 * which have TEXCB=00100 (Normal). Domain bits are set to 1111
	 * and AP bits are set to 11, but this is mostly irrelevant.
	 */
	for (i = 0; i < 4096; i++)
		tt[i] = 0x00000DE2 | (i << 20);
	tt[0x000] |= 0x1000;
	tt[0xFFF] |= 0x1000;

	return tt;
}

933
934
uint32_t *aw_backup_and_disable_mmu(libusb_device_handle *usb,
                                    soc_sram_info *sram_info)
935
{
936
	uint32_t *tt = NULL;
937
	uint32_t sctlr, ttbr0, ttbcr, dacr;
938
939
940
	uint32_t i;

	uint32_t arm_code[] = {
941
		/* Disable I-cache, MMU and branch prediction */
942
943
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
944
945
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
946
947
948
949
950
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

951
952
953
954
955
956
957
958
959
960
961
	/*
	 * Below are some checks for the register values, which are known
	 * to be initialized in this particular way by the existing BROM
	 * implementations. We don't strictly need them to exactly match,
	 * but still have these safety guards in place in order to detect
	 * and review any potential configuration changes in future SoC
	 * variants (if one of these checks fails, then it is not a serious
	 * problem but more likely just an indication that one of these
	 * checks needs to be relaxed).
	 */

962
	/* Basically, ignore M/Z/I/V/UNK bits and expect no TEX remap */
963
	sctlr = aw_get_sctlr(usb, sram_info);
964
	if ((sctlr & ~((0x7 << 11) | (1 << 6) | 1)) != 0x00C50038) {
965
966
967
968
		fprintf(stderr, "Unexpected SCTLR (%08X)\n", sctlr);
		exit(1);
	}

969
	if (!(sctlr & 1)) {
970
971
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
972
973
	}

974
	dacr = aw_get_dacr(usb, sram_info);
975
976
977
978
979
	if (dacr != 0x55555555) {
		fprintf(stderr, "Unexpected DACR (%08X)\n", dacr);
		exit(1);
	}

980
	ttbcr = aw_get_ttbcr(usb, sram_info);
981
982
	if (ttbcr != 0x00000000) {
		fprintf(stderr, "Unexpected TTBCR (%08X)\n", ttbcr);
983
984
985
		exit(1);
	}

986
	ttbr0 = aw_get_ttbr0(usb, sram_info);
987
988
989
990
991
	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

992
	tt = malloc(16 * 1024);
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
	aw_fel_read(usb, ttbr0, tt, 16 * 1024);
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

1010
	pr_info("Disabling I-cache, MMU and branch prediction...");
1011
1012
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
1013
1014
1015
1016
1017
	pr_info(" done.\n");

	return tt;
}

1018
1019
1020
void aw_restore_and_enable_mmu(libusb_device_handle *usb,
                               soc_sram_info *sram_info,
                               uint32_t *tt)
1021
1022
{
	uint32_t i;
1023
	uint32_t ttbr0 = aw_get_ttbr0(usb, sram_info);
1024
1025

	uint32_t arm_code[] = {
1026
1027
1028
1029
1030
1031
1032
1033
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
1034
1035
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
1036
1037
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
1038
1039
1040
1041
1042
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

1059
1060
1061
1062
1063
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
	aw_fel_write(usb, tt, ttbr0, 16 * 1024);

1064
	pr_info("Enabling I-cache, MMU and branch prediction...");
1065
1066
	aw_fel_write(usb, arm_code, sram_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(usb, sram_info->scratch_addr);
1067
1068
1069
1070
1071
	pr_info(" done.\n");

	free(tt);
}

1072
1073
1074
1075
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
1076
#define SPL_LEN_LIMIT 0x8000
1077

1078
1079
1080
1081
1082
1083
1084
1085
void aw_fel_write_and_execute_spl(libusb_device_handle *usb,
				  uint8_t *buf, size_t len)
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
1086
	uint32_t sp, sp_irq;
1087
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
1088
	uint32_t *buf32 = (uint32_t *)buf;
1089
	uint32_t cur_addr = sram_info->spl_addr;
1090
	uint32_t *tt = NULL;
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

	if (!sram_info || !sram_info->swap_buffers) {
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

1119
1120
	if (sram_info->needs_l2en) {
		pr_info("Enabling the L2 cache\n");
1121
		aw_enable_l2_cache(usb, sram_info);
1122
1123
	}

1124
	aw_get_stackinfo(usb, sram_info, &sp_irq, &sp);
1125
1126
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

1127
	tt = aw_backup_and_disable_mmu(usb, sram_info);
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
	if (!tt && sram_info->mmu_tt_addr) {
		if (sram_info->mmu_tt_addr & 0x3FFF) {
			fprintf(stderr, "SPL: 'mmu_tt_addr' must be 16K aligned\n");
			exit(1);
		}
		pr_info("Generating the new MMU translation table at 0x%08X\n",
		        sram_info->mmu_tt_addr);
		/*
		 * These settings are used by the BROM in A10/A13/A20 and
		 * we replicate them here when enabling the MMU. The DACR
		 * value 0x55555555 means that accesses are checked against
		 * the permission bits in the translation tables for all
		 * domains. The TTBCR value 0x00000000 means that the short
		 * descriptor translation table format is used, TTBR0 is used
		 * for all the possible virtual addresses (N=0) and that the
		 * translation table must be aligned at a 16K boundary.
		 */
		aw_set_dacr(usb, sram_info, 0x55555555);
		aw_set_ttbcr(usb, sram_info, 0x00000000);
		aw_set_ttbr0(usb, sram_info, sram_info->mmu_tt_addr);
		tt = aw_generate_mmu_translation_table();
	}
1150

1151
1152
	swap_buffers = sram_info->swap_buffers;
	for (i = 0; swap_buffers[i].size; i++) {
1153
1154
1155
1156
1157
		if ((swap_buffers[i].buf2 >= sram_info->spl_addr) &&
		    (swap_buffers[i].buf2 < sram_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - sram_info->spl_addr;
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
1158
1159
			if (tmp > len)
				tmp = len;
1160
1161
			aw_fel_write(usb, buf, cur_addr, tmp);
			cur_addr += tmp;
1162
1163
1164
			buf += tmp;
			len -= tmp;
		}
1165
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
1166
1167
1168
1169
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
			aw_fel_write(usb, buf, swap_buffers[i].buf2, tmp);
1170
			cur_addr += tmp;
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
	if (sram_info->thunk_addr < spl_len_limit)
		spl_len_limit = sram_info->thunk_addr;

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
1188
		aw_fel_write(usb, buf, cur_addr, len);
1189

1190
1191
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(sram_info->spl_addr) +
		     (i + 1) * sizeof(*swap_buffers);
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

	if (thunk_size > sram_info->thunk_size) {
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
			(int)sizeof(fel_to_spl_thunk), sram_info->thunk_size);
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
1202
1203
	       &sram_info->spl_addr, sizeof(sram_info->spl_addr));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
1204
1205
1206
1207
1208
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

1209
	pr_info("=> Executing the SPL...");
1210
1211
	aw_fel_write(usb, thunk_buf, sram_info->thunk_addr, thunk_size);
	aw_fel_execute(usb, sram_info->thunk_addr);
1212
	pr_info(" done.\n");
1213
1214
1215
1216
1217
1218
1219

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
1220
	aw_fel_read(usb, sram_info->spl_addr + 4, header_signature, 8);
1221
1222
1223
1224
1225
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
1226

1227
	/* re-enable the MMU if it was enabled by BROM */
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1228
	if (tt != NULL)
1229
		aw_restore_and_enable_mmu(usb, sram_info, tt);
1230
1231
}

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
void aw_fel_write_uboot_image(libusb_device_handle *usb,
		uint8_t *buf, size_t len)
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	uint32_t *buf32 = (uint32_t *)buf;

1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
	/* Check for a valid mkimage header */
	int image_type = get_image_type(buf, len);
	if (image_type <= IH_TYPE_INVALID) {
		switch (image_type) {
		case IH_TYPE_INVALID:
			fprintf(stderr, "Invalid U-Boot image: bad size or signature\n");
			break;
		case IH_TYPE_ARCH_MISMATCH:
			fprintf(stderr, "Invalid U-Boot image: wrong architecture\n");
			break;
		default:
			fprintf(stderr, "Invalid U-Boot image: error code %d\n",
				image_type);
		}
1260
1261
		exit(1);
	}
1262
1263
1264
	if (image_type != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image type mismatch: "
			"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
1265
1266
1267
1268
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
1269
	if (data_size != len - HEADER_SIZE) {
1270
		fprintf(stderr, "U-Boot image data size mismatch: "
1271
			"expected %zu, got %u\n", len - HEADER_SIZE, data_size);
1272
1273
1274
1275
1276
1277
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1278
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.c
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

1290
	aw_write_buffer(usb, buf + HEADER_SIZE, load_addr, data_size, false);
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
void aw_fel_process_spl_and_uboot(libusb_device_handle *usb,
		const char *filename)
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
	aw_fel_write_and_execute_spl(usb, buf, size);
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
1309
1310
	if (size > SPL_LEN_LIMIT)
		aw_fel_write_uboot_image(usb, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
1311
	free(buf);
1312
1313
}

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
/*
 * Test the SPL header for our "sunxi" variant. We want to make sure that
 * we can safely use specific header fields to pass information to U-Boot.
 * In case of a missing signature (e.g. Allwinner boot0) or header version
 * mismatch, this function will return "false". If all seems fine,
 * the result is "true".
 */
#define SPL_SIGNATURE			"SPL" /* marks "sunxi" header */
#define SPL_MIN_VERSION			1 /* minimum required version */
#define SPL_MAX_VERSION			1 /* maximum supported version */
1324
bool have_sunxi_spl(libusb_device_handle *usb, uint32_t spl_addr)
1325
1326
1327
1328
1329
1330
1331
{
	uint8_t spl_signature[4];

	aw_fel_read(usb, spl_addr + 0x14,
		&spl_signature, sizeof(spl_signature));

	if (memcmp(spl_signature, SPL_SIGNATURE, 3) != 0)
1332
		return false; /* signature mismatch, no "sunxi" SPL */
1333
1334
1335
1336
1337
1338

	if (spl_signature[3] < SPL_MIN_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X < required minimum 0x%02X\n",
			spl_signature[3], SPL_MIN_VERSION);
		fprintf(stderr, "You need to update your U-Boot (mksunxiboot) to a more recent version.\n");
1339
		return false;
1340
1341
1342
1343
1344
1345
	}
	if (spl_signature[3] > SPL_MAX_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X > maximum supported 0x%02X\n",
			spl_signature[3], SPL_MAX_VERSION);
		fprintf(stderr, "You need a more recent version of this (sunxi-tools) fel utility.\n");
1346
		return false;
1347
	}
1348
	return true; /* sunxi SPL and suitable version */
1349
1350
1351
1352
}

/*
 * Pass information to U-Boot via specialized fields in the SPL header
1353
1354
 * (see "boot_file_head" in ${U-BOOT}/arch/arm/include/asm/arch-sunxi/spl.h),
 * providing the boot script address (DRAM location of boot.scr).
1355
 */
1356
1357
void pass_fel_information(libusb_device_handle *usb,
			  uint32_t script_address, uint32_t uEnv_length)
1358
1359
1360
1361
1362
{
	soc_sram_info *sram_info = aw_fel_get_sram_info(usb);

	/* write something _only_ if we have a suitable SPL header */
	if (have_sunxi_spl(usb, sram_info->spl_addr)) {
1363
1364
1365
1366
1367
1368
1369
1370
1371
		pr_info("Passing boot info via sunxi SPL: "
			"script address = 0x%08X, uEnv length = %u\n",
			script_address, uEnv_length);
		uint32_t transfer[] = {
			htole32(script_address),
			htole32(uEnv_length)
		};
		aw_fel_write(usb, transfer,
			sram_info->spl_addr + 0x18, sizeof(transfer));
1372
1373
1374
	}
}

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
static int aw_fel_get_endpoint(libusb_device_handle *usb)
{
	struct libusb_device *dev = libusb_get_device(usb);
	struct libusb_config_descriptor *config;
	int if_idx, set_idx, ep_idx, ret;

	ret = libusb_get_active_config_descriptor(dev, &config);
	if (ret)
		return ret;

	for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
		const struct libusb_interface *iface = config->interface + if_idx;

		for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
			const struct libusb_interface_descriptor *setting =
				iface->altsetting + set_idx;

			for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
				const struct libusb_endpoint_descriptor *ep =
					setting->endpoint + ep_idx;

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1396
				/* Test for bulk transfer endpoint */
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
				if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) !=
						LIBUSB_TRANSFER_TYPE_BULK)
					continue;

				if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
						LIBUSB_ENDPOINT_IN)
					AW_USB_FEL_BULK_EP_IN = ep->bEndpointAddress;
				else
					AW_USB_FEL_BULK_EP_OUT = ep->bEndpointAddress;
			}
		}
	}

	libusb_free_config_descriptor(config);

	return 0;
}

1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
/*
 * This function stores a given entry point to the RVBAR address for CPU0,
 * and then writes the Reset Management Register to request a warm boot.
 * It is useful with some AArch64 transitions, e.g. when passing control to
 * ARM Trusted Firmware (ATF) during the boot process of Pine64.
 *
 * The code was inspired by
 * https://github.com/apritzel/u-boot/commit/fda6bd1bf285c44f30ea15c7e6231bf53c31d4a8
 */
void aw_rmr_request(libusb_device_handle *usb, uint32_t entry_point, bool aarch64)
{
	soc_sram_info *soc_info = aw_fel_get_sram_info(usb);
	if (!soc_info->rvbar_reg) {
		fprintf(stderr, "ERROR: Can't issue RMR request!\n"
			"RVBAR is not supported or unknown for your SoC (id=%04X).\n",
			soc_info->soc_id);
		return;
	}

	uint32_t rmr_mode = (1 << 1) | (aarch64 ? 1 : 0); /* RR, AA64 flag */
	uint32_t arm_code[] = {
		htole32(0xe59f0028), /* ldr        r0, [rvbar_reg]          */
		htole32(0xe59f1028), /* ldr        r1, [entry_point]        */
		htole32(0xe5801000), /* str        r1, [r0]                 */
		htole32(0xf57ff04f), /* dsb        sy                       */
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe59f101c), /* ldr        r1, [rmr_mode]           */
		htole32(0xee1c0f50), /* mrc        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xe1800001), /* orr        r0, r0, r1               */
		htole32(0xee0c0f50), /* mcr        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe320f003), /* loop:      wfi                      */
		htole32(0xeafffffd), /* b          <loop>                   */

		htole32(soc_info->rvbar_reg),
		htole32(entry_point),
		htole32(rmr_mode)
	};
	/* scratch buffer setup: transfers ARM code and parameter values */
	aw_fel_write(usb, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	/* execute the thunk code (triggering a warm reset on the SoC) */
	pr_info("Store entry point 0x%08X to RVBAR 0x%08X, "
		"and request warm reset with RMR mode %u...",
		entry_point, soc_info->rvbar_reg, rmr_mode);
	aw_fel_execute(usb, soc_info->scratch_addr);
	pr_info(" done.\n");
}

1465
1466
1467
1468
1469
1470
1471
1472
/* check buffer for magic "#=uEnv", indicating uEnv.txt compatible format */
static bool is_uEnv(void *buffer, size_t size)
{
	if (size <= 6)
		return false; /* insufficient size */
	return memcmp(buffer, "#=uEnv", 6) == 0;
}

1473
1474
/* private helper function, gets used for "write*" and "multi*" transfers */
static unsigned int file_upload(libusb_device_handle *handle, size_t count,
1475
				size_t argc, char **argv, progress_cb_t callback)
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
{
	if (argc < count * 2) {
		fprintf(stderr, "error: too few arguments for uploading %zu files\n",
			count);
		exit(1);
	}

	/* get all file sizes, keeping track of total bytes */
	size_t size = 0;
	unsigned int i;
	for (i = 0; i < count; i++)
		size += file_size(argv[i * 2 + 1]);

1489
	progress_start(callback, size); /* set total size and progress callback */
1490
1491
1492
1493
1494
1495

	/* now transfer each file in turn */
	for (i = 0; i < count; i++) {
		void *buf = load_file(argv[i * 2 + 1], &size);
		if (size > 0) {
			uint32_t offset = strtoul(argv[i * 2], NULL, 0);
1496
			aw_write_buffer(handle, buf, offset, size, callback != NULL);
1497

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1498
			/* If we transferred a script, try to inform U-Boot about its address. */
1499
			if (get_image_type(buf, size) == IH_TYPE_SCRIPT)
1500
1501
1502
				pass_fel_information(handle, offset, 0);
			if (is_uEnv(buf, size)) /* uEnv-style data */
				pass_fel_information(handle, offset, size);
1503
1504
1505
1506
		}
		free(buf);
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1507
	return i; /* return number of files that were processed */
1508
1509
}

1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
/* open libusb handle to desired FEL device */
static libusb_device_handle *open_fel_device(int busnum, int devnum,
		uint16_t vendor_id, uint16_t product_id)
{
	libusb_device_handle *result = NULL;

	if (busnum < 0 || devnum < 0) {
		/* With the default values (busnum -1, devnum -1) we don't care
		 * for a specific USB device; so let libusb open the first
		 * device that matches VID/PID.
		 */
		result = libusb_open_device_with_vid_pid(NULL, vendor_id, product_id);
		if (!result) {
			switch (errno) {
			case EACCES:
				fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
				break;
			default:
				fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
				break;
			}
			exit(1);
		}
		return result;
	}

	/* look for specific bus and device number */
	pr_info("Selecting USB Bus %03d Device %03d\n", busnum, devnum);
	bool found = false;
	ssize_t rc, i;
	libusb_device **list;

	rc = libusb_get_device_list(NULL, &list);
1543
1544
	if (rc < 0)
		usb_error(rc, "libusb_get_device_list()", 1);
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
	for (i = 0; i < rc; i++) {
		if (libusb_get_bus_number(list[i]) == busnum
		    && libusb_get_device_address(list[i]) == devnum) {
			found = true; /* bus:devnum matched */
			struct libusb_device_descriptor desc;
			libusb_get_device_descriptor(list[i], &desc);
			if (desc.idVendor != vendor_id
			    || desc.idProduct != product_id) {
				fprintf(stderr, "ERROR: Bus %03d Device %03d not a FEL device "
					"(expected %04x:%04x, got %04x:%04x)\n", busnum, devnum,
					vendor_id, product_id, desc.idVendor, desc.idProduct);
				exit(1);
			}
			/* open handle to this specific device (incrementing its refcount) */
			rc = libusb_open(list[i], &result);
1560
1561
			if (rc != 0)
				usb_error(rc, "libusb_open()", 1);
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
			break;
		}
	}
	libusb_free_device_list(list, true);

	if (!found) {
		fprintf(stderr, "ERROR: Bus %03d Device %03d not found in libusb device list\n",
			busnum, devnum);
		exit(1);
	}
	return result;
}

1575
1576
int main(int argc, char **argv)
{
1577
	bool uboot_autostart = false; /* flag for "uboot" command = U-Boot autostart */
1578
	bool pflag_active = false; /* -p switch, causing "write" to output progress */
1579
1580
	libusb_device_handle *handle;
	int busnum = -1, devnum = -1;
1581
#if defined(__linux__)
1582
	int iface_detached = -1;
1583
#endif
1584
1585

	if (argc <= 1) {
1586
		puts("sunxi-fel " VERSION "\n");
1587
1588
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
1589
			"	-p, --progress			\"write\" transfers show a progress bar\n"
1590
			"	-d, --dev bus:devnum		Use specific USB bus and device number\n"
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
1602
1603
1604
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
1605
			"	reset64 address			RMR request for AArch64 warm boot\n"
1606
1607
			"	readl address			Read 32-bit value from device memory\n"
			"	writel address value		Write 32-bit value to device memory\n"
1608
			"	read address length file	Write memory contents into file\n"
1609
			"	write address file		Store file contents into memory\n"
1610
			"	write-with-progress addr file	\"write\" with progress bar\n"
1611
1612
			"	write-with-gauge addr file	Output progress for \"dialog --gauge\"\n"
			"	write-with-xgauge addr file	Extended gauge output (updates prompt)\n"
1613
1614
			"	multi[write] # addr file ...	\"write-with-progress\" multiple files,\n"
			"					sharing a common progress status\n"
1615
1616
1617
			"	multi[write]-with-gauge ...	like their \"write-with-*\" counterpart,\n"
			"	multi[write]-with-xgauge ...	  but following the 'multi' syntax:\n"
			"					  <#> addr file [addr file [...]]\n"
1618
			"	echo-gauge \"some text\"		Update prompt/caption for gauge output\n"
1619
			"	ver[sion]			Show BROM version\n"
1620
			"	sid				Retrieve and output 128-bit SID key\n"
1621
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1622
			"	fill address length value	Fill memory\n"
1623
1624
			, argv[0]
		);
1625
		exit(0);
1626
1627
	}

1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
	/* process all "prefix"-type arguments first */
	while (argc > 1) {
		if (strcmp(argv[1], "--verbose") == 0 || strcmp(argv[1], "-v") == 0)
			verbose = true;
		else if (strcmp(argv[1], "--progress") == 0 || strcmp(argv[1], "-p") == 0)
			pflag_active = true;
		else if (strncmp(argv[1], "--dev", 5) == 0 || strncmp(argv[1], "-d", 2) == 0) {
			char *dev_arg = argv[1];
			dev_arg += strspn(dev_arg, "-dev="); /* skip option chars, ignore '=' */
			if (*dev_arg == 0 && argc > 2) { /* at end of argument, use the next one instead */
				dev_arg = argv[2];
				argc -= 1;
				argv += 1;
			}
			if (sscanf(dev_arg, "%d:%d", &busnum, &devnum) != 2
			    || busnum <= 0 || devnum <= 0) {
				fprintf(stderr, "ERROR: Expected 'bus:devnum', got '%s'.\n", dev_arg);
				exit(1);
			}
		} else
			break; /* no valid (prefix) option detected, exit loop */
		argc -= 1;
		argv += 1;
1651
	}
1652

1653
1654
	int rc = libusb_init(NULL);
	assert(rc == 0);
1655
1656
	handle = open_fel_device(busnum, devnum, AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
	assert(handle != NULL);
1657
	rc = libusb_claim_interface(handle, 0);
1658
1659
1660
1661
1662
1663
1664
#if defined(__linux__)
	if (rc != LIBUSB_SUCCESS) {
		libusb_detach_kernel_driver(handle, 0);
		iface_detached = 0;
		rc = libusb_claim_interface(handle, 0);
	}
#endif
1665
1666
	assert(rc == 0);

1667
1668
1669
1670
1671
	if (aw_fel_get_endpoint(handle)) {
		fprintf(stderr, "ERROR: Failed to get FEL mode endpoint addresses!\n");
		exit(1);
	}

1672
1673
	while (argc > 1 ) {
		int skip = 1;
1674

1675
		if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
1676
1677
1678
1679
1680
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1681
1682
1683
1684
1685
1686
		} else if (strcmp(argv[1], "readl") == 0 && argc > 2) {
			printf("0x%08x\n", aw_fel_readl(handle, strtoul(argv[2], NULL, 0)));
			skip = 2;
		} else if (strcmp(argv[1], "writel") == 0 && argc > 3) {
			aw_fel_writel(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1687
		} else if (strncmp(argv[1], "exe", 3) == 0 && argc > 2) {
1688
1689
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
1690
1691
1692
1693
1694
		} else if (strcmp(argv[1], "reset64") == 0 && argc > 2) {
			aw_rmr_request(handle, strtoul(argv[2], NULL, 0), true);
			/* Cancel U-Boot autostart, and stop processing args */
			uboot_autostart = false;
			break;
1695
		} else if (strncmp(argv[1], "ver", 3) == 0) {
1696
			aw_fel_print_version(handle);
1697
1698
		} else if (strcmp(argv[1], "sid") == 0) {
			aw_fel_print_sid(handle);
1699
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1700
1701
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
					pflag_active ? progress_bar : NULL);
1702
1703
1704
		} else if (strcmp(argv[1], "write-with-progress") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_bar);
1705
1706
1707
1708
1709
1710
		} else if (strcmp(argv[1], "write-with-gauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge);
		} else if (strcmp(argv[1], "write-with-xgauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge_xxx);
1711
1712
1713
1714
1715
		} else if ((strcmp(argv[1], "multiwrite") == 0 ||
			    strcmp(argv[1], "multi") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_bar);
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
		} else if ((strcmp(argv[1], "multiwrite-with-gauge") == 0 ||
			    strcmp(argv[1], "multi-with-gauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge);
		} else if ((strcmp(argv[1], "multiwrite-with-xgauge") == 0 ||
			    strcmp(argv[1], "multi-with-xgauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge_xxx);
1726
1727
1728
1729
		} else if ((strcmp(argv[1], "echo-gauge") == 0) && argc > 2) {
			skip = 2;
			printf("XXX\n0\n%s\nXXX\n", argv[2]);
			fflush(stdout);
1730
1731
1732
1733
1734
1735
1736
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1737
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1738
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1739
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1740
1741
1742
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1743
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1744
1745
1746
1747
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
1748
1749
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
1750
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1751
			skip=2;
1752
1753
1754
1755
1756
1757
1758
1759
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1760
	/* auto-start U-Boot if requested (by the "uboot" command) */
1761
	if (uboot_autostart) {
1762
1763
1764
1765
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1766
	libusb_release_interface(handle, 0);
1767
1768
1769
1770
#if defined(__linux__)
	if (iface_detached >= 0)
		libusb_attach_kernel_driver(handle, iface_detached);
#endif
1771
1772
	libusb_close(handle);
	libusb_exit(NULL);
1773

1774
1775
	return 0;
}