fel.c 43.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
19
#include "common.h"
#include "portable_endian.h"
20
#include "fel_lib.h"
21

22
23
#include <assert.h>
#include <ctype.h>
24
#include <errno.h>
25
26
27
28
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
29
#include <unistd.h>
30
#include <sys/stat.h>
31

32
static bool verbose = false; /* If set, makes the 'fel' tool more talkative */
33
34
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
35
36
37
38
39
40
41
42
43
44

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_INVALID		0	/* Invalid Image	*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_TYPE_SCRIPT		6	/* Script file		*/
#define IH_NMLEN		32	/* Image Name Length	*/

/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH	-1

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * Utility function to determine the image type from a mkimage-compatible
 * header at given buffer (address).
 *
 * For invalid headers (insufficient size or 'magic' mismatch) the function
 * will return IH_TYPE_INVALID. Negative return values might indicate
 * special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
 * image doesn't match the expected (ARM) architecture.
 * Otherwise the function will return the "ih_type" field for valid headers.
 */
int get_image_type(const uint8_t *buf, size_t len)
{
	uint32_t *buf32 = (uint32_t *)buf;

	if (len <= HEADER_SIZE) /* insufficient length/size */
		return IH_TYPE_INVALID;
	if (be32toh(buf32[0]) != IH_MAGIC) /* signature mismatch */
		return IH_TYPE_INVALID;
	/* For sunxi, we always expect ARM architecture here */
	if (buf[29] != IH_ARCH_ARM)
		return IH_TYPE_ARCH_MISMATCH;

	/* assume a valid header, and return ih_type */
	return buf[30];
}

86
void aw_fel_print_version(feldev_handle *dev)
87
88
{
	struct aw_fel_version buf;
89
	aw_fel_get_version(dev, &buf);
90

Henrik Nordstrom's avatar
Henrik Nordstrom committed
91
	const char *soc_name="unknown";
92
	switch (buf.soc_id) {
Bernhard Nortmann's avatar
Bernhard Nortmann committed
93
94
95
96
97
	case 0x1623: soc_name="A10"; break;
	case 0x1625: soc_name="A13"; break;
	case 0x1633: soc_name="A31"; break;
	case 0x1651: soc_name="A20"; break;
	case 0x1650: soc_name="A23"; break;
98
	case 0x1689: soc_name="A64"; break;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
99
100
101
102
	case 0x1639: soc_name="A80"; break;
	case 0x1667: soc_name="A33"; break;
	case 0x1673: soc_name="A83T"; break;
	case 0x1680: soc_name="H3"; break;
103
	case 0x1701: soc_name="R40"; break;
104
	case 0x1718: soc_name="H5"; break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
105
106
	}

107
108
109
110
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
111
112
}

113
/*
114
115
 * This wrapper for the FEL write functionality safeguards against overwriting
 * an already loaded U-Boot binary.
116
117
 * The return value represents elapsed time in seconds (needed for execution).
 */
118
double aw_write_buffer(feldev_handle *dev, void *buf, uint32_t offset,
119
		       size_t len, bool progress)
120
121
122
123
124
125
126
{
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size
			   && offset + len >= uboot_entry)
	{
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
127
			offset, (uint32_t)(offset + len),
128
129
130
131
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
	double start = gettime();
132
	aw_fel_write_buffer(dev, buf, offset, len, progress);
133
134
135
	return gettime() - start;
}

136
137
138
139
140
141
void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
142
		printf("%08zx: ", offset + j);
143
		for (i = 0; i < 16; i++) {
144
			if (j + i < size)
145
				printf("%02x ", buf[j+i]);
146
			else
147
148
				printf("__ ");
		}
149
		putchar(' ');
150
		for (i = 0; i < 16; i++) {
151
152
153
154
			if (j + i >= size)
				putchar('.');
			else
				putchar(isprint(buf[j+i]) ? buf[j+i] : '.');
155
		}
156
		putchar('\n');
157
158
	}
}
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
unsigned int file_size(const char *filename)
{
	struct stat st;
	if (stat(filename, &st) != 0) {
		fprintf(stderr, "stat() error on file \"%s\": %s\n", filename,
			strerror(errno));
		exit(1);
	}
	if (!S_ISREG(st.st_mode)) {
		fprintf(stderr, "error: \"%s\" is not a regular file\n", filename);
		exit(1);
	}
	return st.st_size;
}

175
176
177
178
int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
179
	if (!out) {
180
		perror("Failed to open output file");
181
182
		exit(1);
	}
183
184
185
186
187
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

188
189
190
191
192
193
194
195
196
197
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
198
	if (!in) {
199
		perror("Failed to open input file");
200
201
		exit(1);
	}
202
	
Bernhard Nortmann's avatar
Bernhard Nortmann committed
203
	while (true) {
204
205
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
206
		offset += n;
207
		if (n < len)
208
209
210
211
212
213
214
215
216
217
218
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

219
void aw_fel_hexdump(feldev_handle *dev, uint32_t offset, size_t size)
220
221
{
	unsigned char buf[size];
222
	aw_fel_read(dev, offset, buf, size);
223
224
225
	hexdump(buf, offset, size);
}

226
void aw_fel_dump(feldev_handle *dev, uint32_t offset, size_t size)
227
228
{
	unsigned char buf[size];
229
	aw_fel_read(dev, offset, buf, size);
230
231
	fwrite(buf, size, 1, stdout);
}
232
void aw_fel_fill(feldev_handle *dev, uint32_t offset, size_t size, unsigned char value)
233
234
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
235
	memset(buf, value, size);
236
	aw_write_buffer(dev, buf, offset, size, false);
237
238
}

239
soc_info_t *aw_fel_get_soc_info(feldev_handle *dev)
240
{
241
242
	/* persistent SoC info, retrieves result pointer once and caches it */
	static soc_info_t *result = NULL;
243
244
	if (result == NULL) {
		struct aw_fel_version buf;
245
		aw_fel_get_version(dev, &buf);
246

247
		result = get_soc_info_from_version(&buf);
248
249
	}
	return result;
250
251
252
253
254
255
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

256
257
258
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

259
uint32_t aw_read_arm_cp_reg(feldev_handle *dev, soc_info_t *soc_info,
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
			    uint32_t coproc, uint32_t opc1, uint32_t crn,
			    uint32_t crm, uint32_t opc2)
{
	uint32_t val = 0;
	uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)    |
			  ((crn & 15) << 16)    |
			  ((coproc & 15) << 8)  |
			  ((opc2 & 7) << 5)     |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(opcode),     /* mrc  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xe58f0000), /* str  r0, [pc]                         */
		htole32(0xe12fff1e), /* bx   lr                               */
	};
275
276
277
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
	aw_fel_read(dev, soc_info->scratch_addr + 12, &val, sizeof(val));
278
279
280
	return le32toh(val);
}

281
void aw_write_arm_cp_reg(feldev_handle *dev, soc_info_t *soc_info,
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
			 uint32_t coproc, uint32_t opc1, uint32_t crn,
			 uint32_t crm, uint32_t opc2, uint32_t val)
{
	uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)                |
			  ((crn & 15) << 16)                |
			  ((coproc & 15) << 8)              |
			  ((opc2 & 7) << 5)                 |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(0xe59f000c), /* ldr  r0, [pc, #12]                    */
		htole32(opcode),     /* mcr  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xf57ff04f), /* dsb  sy                               */
		htole32(0xf57ff06f), /* isb  sy                               */
		htole32(0xe12fff1e), /* bx   lr                               */
		htole32(val)
	};
299
300
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
301
302
}

303
304
305
306
307
308
309
310
311
312
/*
 * We don't want the scratch code/buffer to exceed a maximum size of 0x400 bytes
 * (256 32-bit words) on readl_n/writel_n transfers. To guarantee this, we have
 * to account for the amount of space the ARM code uses.
 */
#define LCODE_ARM_WORDS  12 /* word count of the [read/write]l_n scratch code */
#define LCODE_ARM_SIZE   (LCODE_ARM_WORDS << 2) /* code size in bytes */
#define LCODE_MAX_TOTAL  0x100 /* max. words in buffer */
#define LCODE_MAX_WORDS  (LCODE_MAX_TOTAL - LCODE_ARM_WORDS) /* data words */

313
/* multiple "readl" from sequential addresses to a destination buffer */
314
void aw_fel_readl_n(feldev_handle *dev, uint32_t addr,
315
316
		    uint32_t *dst, size_t count)
{
317
318
319
320
321
322
	if (count == 0) return;
	if (count > LCODE_MAX_WORDS) {
		fprintf(stderr,
			"ERROR: Max. word count exceeded, truncating aw_fel_readl_n() transfer\n");
		count = LCODE_MAX_WORDS;
	}
323
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
324
325

	assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
326
	uint32_t arm_code[] = {
327
328
329
330
331
332
333
334
335
336
337
338
339
340
		htole32(0xe59f0020), /* ldr  r0, [pc, #32] ; ldr r0,[read_addr]  */
		htole32(0xe28f1024), /* add  r1, pc, #36   ; adr r1, read_data   */
		htole32(0xe59f201c), /* ldr  r2, [pc, #28] ; ldr r2,[read_count] */
		htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp	r2, #LCODE_MAX_WORDS */
		htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt	r2, #LCODE_MAX_WORDS */
		/* read_loop: */
		htole32(0xe2522001), /* subs r2, r2, #1    ; r2 -= 1             */
		htole32(0x412fff1e), /* bxmi lr            ; return if (r2 < 0)  */
		htole32(0xe4903004), /* ldr  r3, [r0], #4  ; load and post-inc   */
		htole32(0xe4813004), /* str  r3, [r1], #4  ; store and post-inc  */
		htole32(0xeafffffa), /* b    read_loop                           */
		htole32(addr),       /* read_addr */
		htole32(count)       /* read_count */
		/* read_data (buffer) follows, i.e. values go here */
341
	};
342
343
344
	assert(sizeof(arm_code) == LCODE_ARM_SIZE);

	/* scratch buffer setup: transfers ARM code, including addr and count */
345
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
346
	/* execute code, read back the result */
347
	aw_fel_execute(dev, soc_info->scratch_addr);
348
	uint32_t buffer[count];
349
	aw_fel_read(dev, soc_info->scratch_addr + LCODE_ARM_SIZE,
350
351
352
353
354
		    buffer, sizeof(buffer));
	/* extract values to destination buffer */
	uint32_t *val = buffer;
	while (count-- > 0)
		*dst++ = le32toh(*val++);
355
356
357
}

/* "readl" of a single value */
358
uint32_t aw_fel_readl(feldev_handle *dev, uint32_t addr)
359
360
{
	uint32_t val;
361
	aw_fel_readl_n(dev, addr, &val, 1);
362
363
364
	return val;
}

365
366
367
368
/*
 * aw_fel_readl_n() wrapper that can handle large transfers. If necessary,
 * those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
 */
369
void fel_readl_n(feldev_handle *dev, uint32_t addr, uint32_t *dst, size_t count)
370
371
372
{
	while (count > 0) {
		size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
373
		aw_fel_readl_n(dev, addr, dst, n);
374
375
376
377
378
379
		addr += n * sizeof(uint32_t);
		dst += n;
		count -= n;
	}
}

380
/* multiple "writel" from a source buffer to sequential addresses */
381
void aw_fel_writel_n(feldev_handle *dev, uint32_t addr,
382
383
		     uint32_t *src, size_t count)
{
384
385
386
387
388
389
	if (count == 0) return;
	if (count > LCODE_MAX_WORDS) {
		fprintf(stderr,
			"ERROR: Max. word count exceeded, truncating aw_fel_writel_n() transfer\n");
		count = LCODE_MAX_WORDS;
	}
390
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

	assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
	/*
	 * We need a fixed array size to allow for (partial) initialization,
	 * so we'll claim the maximum total number of words (0x100) here.
	 */
	uint32_t arm_code[LCODE_MAX_TOTAL] = {
		htole32(0xe59f0020), /* ldr  r0, [pc, #32] ; ldr r0,[write_addr] */
		htole32(0xe28f1024), /* add  r1, pc, #36   ; adr r1, write_data  */
		htole32(0xe59f201c), /* ldr  r2, [pc, #28] ; ldr r2,[write_count]*/
		htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp	r2, #LCODE_MAX_WORDS */
		htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt	r2, #LCODE_MAX_WORDS */
		/* write_loop: */
		htole32(0xe2522001), /* subs r2, r2, #1    ; r2 -= 1             */
		htole32(0x412fff1e), /* bxmi lr            ; return if (r2 < 0)  */
		htole32(0xe4913004), /* ldr  r3, [r1], #4  ; load and post-inc   */
		htole32(0xe4803004), /* str  r3, [r0], #4  ; store and post-inc  */
		htole32(0xeafffffa), /* b    write_loop                          */
		htole32(addr),       /* write_addr */
		htole32(count)       /* write_count */
		/* write_data (buffer) follows, i.e. values taken from here */
412
	};
413
414
415
416
417
418

	/* copy values from source buffer */
	size_t i;
	for (i = 0; i < count; i++)
		arm_code[LCODE_ARM_WORDS + i] = htole32(*src++);
	/* scratch buffer setup: transfers ARM code and data */
419
	aw_fel_write(dev, arm_code, soc_info->scratch_addr,
420
421
	             (LCODE_ARM_WORDS + count) * sizeof(uint32_t));
	/* execute, and we're done */
422
	aw_fel_execute(dev, soc_info->scratch_addr);
423
424
425
}

/* "writel" of a single value */
426
void aw_fel_writel(feldev_handle *dev, uint32_t addr, uint32_t val)
427
{
428
	aw_fel_writel_n(dev, addr, &val, 1);
429
430
}

431
432
433
434
/*
 * aw_fel_writel_n() wrapper that can handle large transfers. If necessary,
 * those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
 */
435
void fel_writel_n(feldev_handle *dev, uint32_t addr, uint32_t *src, size_t count)
436
437
438
{
	while (count > 0) {
		size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
439
		aw_fel_writel_n(dev, addr, src, n);
440
441
442
443
444
445
		addr += n * sizeof(uint32_t);
		src += n;
		count -= n;
	}
}

446
void aw_fel_print_sid(feldev_handle *dev)
447
{
448
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
449
450
451
452
	if (soc_info->sid_addr) {
		pr_info("SID key (e-fuses) at 0x%08X\n", soc_info->sid_addr);

		uint32_t key[4];
453
		aw_fel_readl_n(dev, soc_info->sid_addr, key, 4);
454
455

		unsigned int i;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
456
		/* output SID in "xxxxxxxx:xxxxxxxx:xxxxxxxx:xxxxxxxx" format */
457
		for (i = 0; i <= 3; i++)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
458
			printf("%08x%c", key[i], i < 3 ? ':' : '\n');
459
460
461
462
463
464
	} else {
		printf("SID registers for your SoC (id=%04X) are unknown or inaccessible.\n",
			soc_info->soc_id);
	}
}

465
void aw_enable_l2_cache(feldev_handle *dev, soc_info_t *soc_info)
466
467
468
469
470
471
472
473
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

474
475
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
476
477
}

478
void aw_get_stackinfo(feldev_handle *dev, soc_info_t *soc_info,
479
                      uint32_t *sp_irq, uint32_t *sp)
480
481
482
483
484
485
486
487
488
489
490
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

491
492
493
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
	aw_fel_read(dev, soc_info->scratch_addr + 0x10, results, 8);
494
495
496
497
498
499
500
501
502
503
504
505
506
507
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

508
509
510
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
	aw_fel_read(dev, soc_info->scratch_addr + 0x24, results, 8);
511
512
513
514
515
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

516
uint32_t aw_get_ttbr0(feldev_handle *dev, soc_info_t *soc_info)
517
{
518
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 0);
519
520
}

521
uint32_t aw_get_ttbcr(feldev_handle *dev, soc_info_t *soc_info)
522
{
523
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 2);
524
525
}

526
uint32_t aw_get_dacr(feldev_handle *dev, soc_info_t *soc_info)
527
{
528
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 3, 0, 0);
529
530
}

531
uint32_t aw_get_sctlr(feldev_handle *dev, soc_info_t *soc_info)
532
{
533
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 1, 0, 0);
534
535
}

536
void aw_set_ttbr0(feldev_handle *dev, soc_info_t *soc_info,
537
538
		  uint32_t ttbr0)
{
539
	return aw_write_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 0, ttbr0);
540
541
}

542
void aw_set_ttbcr(feldev_handle *dev, soc_info_t *soc_info,
543
544
		  uint32_t ttbcr)
{
545
	return aw_write_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 2, ttbcr);
546
547
}

548
void aw_set_dacr(feldev_handle *dev, soc_info_t *soc_info,
549
550
		 uint32_t dacr)
{
551
	aw_write_arm_cp_reg(dev, soc_info, 15, 0, 3, 0, 0, dacr);
552
553
}

554
void aw_set_sctlr(feldev_handle *dev, soc_info_t *soc_info,
555
556
		  uint32_t sctlr)
{
557
	aw_write_arm_cp_reg(dev, soc_info, 15, 0, 1, 0, 0, sctlr);
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
}

/*
 * Reconstruct the same MMU translation table as used by the A20 BROM.
 * We are basically reverting the changes, introduced in newer SoC
 * variants. This works fine for the SoC variants with the memory
 * layout similar to A20 (the SRAM is in the first megabyte of the
 * address space and the BROM is in the last megabyte of the address
 * space).
 */
uint32_t *aw_generate_mmu_translation_table(void)
{
	uint32_t *tt = malloc(4096 * sizeof(uint32_t));
	uint32_t i;

	/*
	 * Direct mapping using 1MB sections with TEXCB=00000 (Strongly
	 * ordered) for all memory except the first and the last sections,
	 * which have TEXCB=00100 (Normal). Domain bits are set to 1111
	 * and AP bits are set to 11, but this is mostly irrelevant.
	 */
	for (i = 0; i < 4096; i++)
		tt[i] = 0x00000DE2 | (i << 20);
	tt[0x000] |= 0x1000;
	tt[0xFFF] |= 0x1000;

	return tt;
}

587
uint32_t *aw_backup_and_disable_mmu(feldev_handle *dev,
588
                                    soc_info_t *soc_info)
589
{
590
	uint32_t *tt = NULL;
591
	uint32_t sctlr, ttbr0, ttbcr, dacr;
592
593
594
	uint32_t i;

	uint32_t arm_code[] = {
595
		/* Disable I-cache, MMU and branch prediction */
596
597
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
598
599
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
600
601
602
603
604
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

605
606
607
608
609
610
611
612
613
614
615
	/*
	 * Below are some checks for the register values, which are known
	 * to be initialized in this particular way by the existing BROM
	 * implementations. We don't strictly need them to exactly match,
	 * but still have these safety guards in place in order to detect
	 * and review any potential configuration changes in future SoC
	 * variants (if one of these checks fails, then it is not a serious
	 * problem but more likely just an indication that one of these
	 * checks needs to be relaxed).
	 */

616
	/* Basically, ignore M/Z/I/V/UNK bits and expect no TEX remap */
617
	sctlr = aw_get_sctlr(dev, soc_info);
618
	if ((sctlr & ~((0x7 << 11) | (1 << 6) | 1)) != 0x00C50038) {
619
620
621
622
		fprintf(stderr, "Unexpected SCTLR (%08X)\n", sctlr);
		exit(1);
	}

623
	if (!(sctlr & 1)) {
624
625
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
626
627
	}

628
	dacr = aw_get_dacr(dev, soc_info);
629
630
631
632
633
	if (dacr != 0x55555555) {
		fprintf(stderr, "Unexpected DACR (%08X)\n", dacr);
		exit(1);
	}

634
	ttbcr = aw_get_ttbcr(dev, soc_info);
635
636
	if (ttbcr != 0x00000000) {
		fprintf(stderr, "Unexpected TTBCR (%08X)\n", ttbcr);
637
638
639
		exit(1);
	}

640
	ttbr0 = aw_get_ttbr0(dev, soc_info);
641
642
643
644
645
	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

646
	tt = malloc(16 * 1024);
647
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
648
	aw_fel_read(dev, ttbr0, tt, 16 * 1024);
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

664
	pr_info("Disabling I-cache, MMU and branch prediction...");
665
666
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
667
668
669
670
671
	pr_info(" done.\n");

	return tt;
}

672
void aw_restore_and_enable_mmu(feldev_handle *dev,
673
                               soc_info_t *soc_info,
674
                               uint32_t *tt)
675
676
{
	uint32_t i;
677
	uint32_t ttbr0 = aw_get_ttbr0(dev, soc_info);
678
679

	uint32_t arm_code[] = {
680
681
682
683
684
685
686
687
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
688
689
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
690
691
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
692
693
694
695
696
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

713
714
715
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
716
	aw_fel_write(dev, tt, ttbr0, 16 * 1024);
717

718
	pr_info("Enabling I-cache, MMU and branch prediction...");
719
720
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
721
722
723
724
725
	pr_info(" done.\n");

	free(tt);
}

726
727
728
729
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
730
#define SPL_LEN_LIMIT 0x8000
731

732
void aw_fel_write_and_execute_spl(feldev_handle *dev, uint8_t *buf, size_t len)
733
{
734
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
735
736
737
738
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
739
	uint32_t sp, sp_irq;
740
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
741
	uint32_t *buf32 = (uint32_t *)buf;
742
	uint32_t cur_addr = soc_info->spl_addr;
743
	uint32_t *tt = NULL;
744

745
	if (!soc_info || !soc_info->swap_buffers) {
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

772
	if (soc_info->needs_l2en) {
773
		pr_info("Enabling the L2 cache\n");
774
		aw_enable_l2_cache(dev, soc_info);
775
776
	}

777
	aw_get_stackinfo(dev, soc_info, &sp_irq, &sp);
778
779
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

780
	tt = aw_backup_and_disable_mmu(dev, soc_info);
781
782
	if (!tt && soc_info->mmu_tt_addr) {
		if (soc_info->mmu_tt_addr & 0x3FFF) {
783
784
785
786
			fprintf(stderr, "SPL: 'mmu_tt_addr' must be 16K aligned\n");
			exit(1);
		}
		pr_info("Generating the new MMU translation table at 0x%08X\n",
787
		        soc_info->mmu_tt_addr);
788
789
790
791
792
793
794
795
796
797
		/*
		 * These settings are used by the BROM in A10/A13/A20 and
		 * we replicate them here when enabling the MMU. The DACR
		 * value 0x55555555 means that accesses are checked against
		 * the permission bits in the translation tables for all
		 * domains. The TTBCR value 0x00000000 means that the short
		 * descriptor translation table format is used, TTBR0 is used
		 * for all the possible virtual addresses (N=0) and that the
		 * translation table must be aligned at a 16K boundary.
		 */
798
799
800
		aw_set_dacr(dev, soc_info, 0x55555555);
		aw_set_ttbcr(dev, soc_info, 0x00000000);
		aw_set_ttbr0(dev, soc_info, soc_info->mmu_tt_addr);
801
802
		tt = aw_generate_mmu_translation_table();
	}
803

804
	swap_buffers = soc_info->swap_buffers;
805
	for (i = 0; swap_buffers[i].size; i++) {
806
807
808
		if ((swap_buffers[i].buf2 >= soc_info->spl_addr) &&
		    (swap_buffers[i].buf2 < soc_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - soc_info->spl_addr;
809
810
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
811
812
			if (tmp > len)
				tmp = len;
813
			aw_fel_write(dev, buf, cur_addr, tmp);
814
			cur_addr += tmp;
815
816
817
			buf += tmp;
			len -= tmp;
		}
818
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
819
820
821
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
822
			aw_fel_write(dev, buf, swap_buffers[i].buf2, tmp);
823
			cur_addr += tmp;
824
825
826
827
828
829
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
830
831
	if (soc_info->thunk_addr < spl_len_limit)
		spl_len_limit = soc_info->thunk_addr;
832
833
834
835
836
837
838
839
840

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
841
		aw_fel_write(dev, buf, cur_addr, len);
842

843
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(soc_info->spl_addr) +
844
		     (i + 1) * sizeof(*swap_buffers);
845

846
	if (thunk_size > soc_info->thunk_size) {
847
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
848
			(int)sizeof(fel_to_spl_thunk), soc_info->thunk_size);
849
850
851
852
853
854
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
855
	       &soc_info->spl_addr, sizeof(soc_info->spl_addr));
856
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
857
858
859
860
861
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

862
	pr_info("=> Executing the SPL...");
863
864
	aw_fel_write(dev, thunk_buf, soc_info->thunk_addr, thunk_size);
	aw_fel_execute(dev, soc_info->thunk_addr);
865
	pr_info(" done.\n");
866
867
868
869
870
871
872

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
873
	aw_fel_read(dev, soc_info->spl_addr + 4, header_signature, 8);
874
875
876
877
878
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
879

880
	/* re-enable the MMU if it was enabled by BROM */
Bernhard Nortmann's avatar
Bernhard Nortmann committed
881
	if (tt != NULL)
882
		aw_restore_and_enable_mmu(dev, soc_info, tt);
883
884
}

885
886
887
888
889
890
/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
891
void aw_fel_write_uboot_image(feldev_handle *dev, uint8_t *buf, size_t len)
892
893
894
895
896
897
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	uint32_t *buf32 = (uint32_t *)buf;

898
899
900
901
902
903
904
905
906
907
908
909
910
911
	/* Check for a valid mkimage header */
	int image_type = get_image_type(buf, len);
	if (image_type <= IH_TYPE_INVALID) {
		switch (image_type) {
		case IH_TYPE_INVALID:
			fprintf(stderr, "Invalid U-Boot image: bad size or signature\n");
			break;
		case IH_TYPE_ARCH_MISMATCH:
			fprintf(stderr, "Invalid U-Boot image: wrong architecture\n");
			break;
		default:
			fprintf(stderr, "Invalid U-Boot image: error code %d\n",
				image_type);
		}
912
913
		exit(1);
	}
914
915
916
	if (image_type != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image type mismatch: "
			"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
917
918
919
920
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
921
	if (data_size != len - HEADER_SIZE) {
922
		fprintf(stderr, "U-Boot image data size mismatch: "
923
			"expected %zu, got %u\n", len - HEADER_SIZE, data_size);
924
925
926
927
928
929
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
Bernhard Nortmann's avatar
Bernhard Nortmann committed
930
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.c
931
932
933
934
935
936
937
938
939
940
941
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

942
	aw_write_buffer(dev, buf + HEADER_SIZE, load_addr, data_size, false);
943
944
945
946
947
948
949
950
951

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
952
void aw_fel_process_spl_and_uboot(feldev_handle *dev, const char *filename)
953
954
955
956
957
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
958
	aw_fel_write_and_execute_spl(dev, buf, size);
959
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
960
	if (size > SPL_LEN_LIMIT)
961
		aw_fel_write_uboot_image(dev, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
962
	free(buf);
963
964
}

965
966
967
968
969
970
971
972
973
974
/*
 * Test the SPL header for our "sunxi" variant. We want to make sure that
 * we can safely use specific header fields to pass information to U-Boot.
 * In case of a missing signature (e.g. Allwinner boot0) or header version
 * mismatch, this function will return "false". If all seems fine,
 * the result is "true".
 */
#define SPL_SIGNATURE			"SPL" /* marks "sunxi" header */
#define SPL_MIN_VERSION			1 /* minimum required version */
#define SPL_MAX_VERSION			1 /* maximum supported version */
975
bool have_sunxi_spl(feldev_handle *dev, uint32_t spl_addr)
976
977
978
{
	uint8_t spl_signature[4];

979
	aw_fel_read(dev, spl_addr + 0x14,
980
981
982
		&spl_signature, sizeof(spl_signature));

	if (memcmp(spl_signature, SPL_SIGNATURE, 3) != 0)
983
		return false; /* signature mismatch, no "sunxi" SPL */
984
985
986
987
988
989

	if (spl_signature[3] < SPL_MIN_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X < required minimum 0x%02X\n",
			spl_signature[3], SPL_MIN_VERSION);
		fprintf(stderr, "You need to update your U-Boot (mksunxiboot) to a more recent version.\n");
990
		return false;
991
992
993
994
995
996
	}
	if (spl_signature[3] > SPL_MAX_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X > maximum supported 0x%02X\n",
			spl_signature[3], SPL_MAX_VERSION);
		fprintf(stderr, "You need a more recent version of this (sunxi-tools) fel utility.\n");
997
		return false;
998
	}
999
	return true; /* sunxi SPL and suitable version */
1000
1001
1002
1003
}

/*
 * Pass information to U-Boot via specialized fields in the SPL header
1004
1005
 * (see "boot_file_head" in ${U-BOOT}/arch/arm/include/asm/arch-sunxi/spl.h),
 * providing the boot script address (DRAM location of boot.scr).
1006
 */
1007
void pass_fel_information(feldev_handle *dev,
1008
			  uint32_t script_address, uint32_t uEnv_length)
1009
{
1010
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
1011
1012

	/* write something _only_ if we have a suitable SPL header */
1013
	if (have_sunxi_spl(dev, soc_info->spl_addr)) {
1014
1015
1016
1017
1018
1019
1020
		pr_info("Passing boot info via sunxi SPL: "
			"script address = 0x%08X, uEnv length = %u\n",
			script_address, uEnv_length);
		uint32_t transfer[] = {
			htole32(script_address),
			htole32(uEnv_length)
		};
1021
		aw_fel_write(dev, transfer,
1022
			soc_info->spl_addr + 0x18, sizeof(transfer));
1023
1024
1025
	}
}

1026
1027
1028
1029
1030
1031
1032
1033
1034
/*
 * This function stores a given entry point to the RVBAR address for CPU0,
 * and then writes the Reset Management Register to request a warm boot.
 * It is useful with some AArch64 transitions, e.g. when passing control to
 * ARM Trusted Firmware (ATF) during the boot process of Pine64.
 *
 * The code was inspired by
 * https://github.com/apritzel/u-boot/commit/fda6bd1bf285c44f30ea15c7e6231bf53c31d4a8
 */
1035
void aw_rmr_request(feldev_handle *dev, uint32_t entry_point, bool aarch64)
1036
{
1037
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
	if (!soc_info->rvbar_reg) {
		fprintf(stderr, "ERROR: Can't issue RMR request!\n"
			"RVBAR is not supported or unknown for your SoC (id=%04X).\n",
			soc_info->soc_id);
		return;
	}

	uint32_t rmr_mode = (1 << 1) | (aarch64 ? 1 : 0); /* RR, AA64 flag */
	uint32_t arm_code[] = {
		htole32(0xe59f0028), /* ldr        r0, [rvbar_reg]          */
		htole32(0xe59f1028), /* ldr        r1, [entry_point]        */
		htole32(0xe5801000), /* str        r1, [r0]                 */
		htole32(0xf57ff04f), /* dsb        sy                       */
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe59f101c), /* ldr        r1, [rmr_mode]           */
		htole32(0xee1c0f50), /* mrc        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xe1800001), /* orr        r0, r0, r1               */
		htole32(0xee0c0f50), /* mcr        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe320f003), /* loop:      wfi                      */
		htole32(0xeafffffd), /* b          <loop>                   */

		htole32(soc_info->rvbar_reg),
		htole32(entry_point),
		htole32(rmr_mode)
	};
	/* scratch buffer setup: transfers ARM code and parameter values */
1067
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
1068
1069
1070
1071
	/* execute the thunk code (triggering a warm reset on the SoC) */
	pr_info("Store entry point 0x%08X to RVBAR 0x%08X, "
		"and request warm reset with RMR mode %u...",
		entry_point, soc_info->rvbar_reg, rmr_mode);
1072
	aw_fel_execute(dev, soc_info->scratch_addr);
1073
1074
1075
	pr_info(" done.\n");
}

1076
1077
1078
1079
1080
1081
1082
1083
/* check buffer for magic "#=uEnv", indicating uEnv.txt compatible format */
static bool is_uEnv(void *buffer, size_t size)
{
	if (size <= 6)
		return false; /* insufficient size */
	return memcmp(buffer, "#=uEnv", 6) == 0;
}

1084
/* private helper function, gets used for "write*" and "multi*" transfers */
1085
static unsigned int file_upload(feldev_handle *dev, size_t count,
1086
				size_t argc, char **argv, progress_cb_t callback)
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
{
	if (argc < count * 2) {
		fprintf(stderr, "error: too few arguments for uploading %zu files\n",
			count);
		exit(1);
	}

	/* get all file sizes, keeping track of total bytes */
	size_t size = 0;
	unsigned int i;
	for (i = 0; i < count; i++)
		size += file_size(argv[i * 2 + 1]);

1100
	progress_start(callback, size); /* set total size and progress callback */
1101
1102
1103
1104
1105
1106

	/* now transfer each file in turn */
	for (i = 0; i < count; i++) {
		void *buf = load_file(argv[i * 2 + 1], &size);
		if (size > 0) {
			uint32_t offset = strtoul(argv[i * 2], NULL, 0);
1107
			aw_write_buffer(dev, buf, offset, size, callback != NULL);
1108

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1109
			/* If we transferred a script, try to inform U-Boot about its address. */
1110
			if (get_image_type(buf, size) == IH_TYPE_SCRIPT)
1111
				pass_fel_information(dev, offset, 0);
1112
			if (is_uEnv(buf, size)) /* uEnv-style data */
1113
				pass_fel_information(dev, offset, size);
1114
1115
1116
1117
		}
		free(buf);
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1118
	return i; /* return number of files that were processed */
1119
1120
}

1121
1122
int main(int argc, char **argv)
{
1123
	bool uboot_autostart = false; /* flag for "uboot" command = U-Boot autostart */
1124
	bool pflag_active = false; /* -p switch, causing "write" to output progress */
1125
	feldev_handle *handle;
1126
	int busnum = -1, devnum = -1;
1127
1128

	if (argc <= 1) {
1129
		puts("sunxi-fel " VERSION "\n");
1130
1131
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
1132
			"	-p, --progress			\"write\" transfers show a progress bar\n"
1133
			"	-d, --dev bus:devnum		Use specific USB bus and device number\n"
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
1145
1146
1147
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
1148
			"	reset64 address			RMR request for AArch64 warm boot\n"
1149
1150
			"	readl address			Read 32-bit value from device memory\n"
			"	writel address value		Write 32-bit value to device memory\n"
1151
			"	read address length file	Write memory contents into file\n"
1152
			"	write address file		Store file contents into memory\n"
1153
			"	write-with-progress addr file	\"write\" with progress bar\n"
1154
1155
			"	write-with-gauge addr file	Output progress for \"dialog --gauge\"\n"
			"	write-with-xgauge addr file	Extended gauge output (updates prompt)\n"
1156
1157
			"	multi[write] # addr file ...	\"write-with-progress\" multiple files,\n"
			"					sharing a common progress status\n"
1158
1159
1160
			"	multi[write]-with-gauge ...	like their \"write-with-*\" counterpart,\n"
			"	multi[write]-with-xgauge ...	  but following the 'multi' syntax:\n"
			"					  <#> addr file [addr file [...]]\n"
1161
			"	echo-gauge \"some text\"		Update prompt/caption for gauge output\n"
1162
			"	ver[sion]			Show BROM version\n"
1163
			"	sid				Retrieve and output 128-bit SID key\n"
1164
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1165
			"	fill address length value	Fill memory\n"
1166
1167
			, argv[0]
		);
1168
		exit(0);
1169
1170
	}

1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
	/* process all "prefix"-type arguments first */
	while (argc > 1) {
		if (strcmp(argv[1], "--verbose") == 0 || strcmp(argv[1], "-v") == 0)
			verbose = true;
		else if (strcmp(argv[1], "--progress") == 0 || strcmp(argv[1], "-p") == 0)
			pflag_active = true;
		else if (strncmp(argv[1], "--dev", 5) == 0 || strncmp(argv[1], "-d", 2) == 0) {
			char *dev_arg = argv[1];
			dev_arg += strspn(dev_arg, "-dev="); /* skip option chars, ignore '=' */
			if (*dev_arg == 0 && argc > 2) { /* at end of argument, use the next one instead */
				dev_arg = argv[2];
				argc -= 1;
				argv += 1;
			}
			if (sscanf(dev_arg, "%d:%d", &busnum, &devnum) != 2
			    || busnum <= 0 || devnum <= 0) {
				fprintf(stderr, "ERROR: Expected 'bus:devnum', got '%s'.\n", dev_arg);
				exit(1);
			}
1190
			pr_info("Selecting USB Bus %03d Device %03d\n", busnum, devnum);
1191
1192
1193
1194
		} else
			break; /* no valid (prefix) option detected, exit loop */
		argc -= 1;
		argv += 1;
1195
	}
1196

1197
	handle = feldev_open(busnum, devnum, AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
1198

1199
1200
	while (argc > 1 ) {
		int skip = 1;
1201

1202
		if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
1203
1204
1205
1206
1207
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1208
1209
1210
1211
1212
1213
		} else if (strcmp(argv[1], "readl") == 0 && argc > 2) {
			printf("0x%08x\n", aw_fel_readl(handle, strtoul(argv[2], NULL, 0)));
			skip = 2;
		} else if (strcmp(argv[1], "writel") == 0 && argc > 3) {
			aw_fel_writel(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1214
		} else if (strncmp(argv[1], "exe", 3) == 0 && argc > 2) {
1215
1216
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
1217
1218
1219
1220
1221
		} else if (strcmp(argv[1], "reset64") == 0 && argc > 2) {
			aw_rmr_request(handle, strtoul(argv[2], NULL, 0), true);
			/* Cancel U-Boot autostart, and stop processing args */
			uboot_autostart = false;
			break;
1222
		} else if (strncmp(argv[1], "ver", 3) == 0) {
1223
			aw_fel_print_version(handle);
1224
1225
		} else if (strcmp(argv[1], "sid") == 0) {
			aw_fel_print_sid(handle);
1226
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1227
1228
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
					pflag_active ? progress_bar : NULL);
1229
1230
1231
		} else if (strcmp(argv[1], "write-with-progress") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_bar);
1232
1233
1234
1235
1236
1237
		} else if (strcmp(argv[1], "write-with-gauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge);
		} else if (strcmp(argv[1], "write-with-xgauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge_xxx);
1238
1239
1240
1241
1242
		} else if ((strcmp(argv[1], "multiwrite") == 0 ||
			    strcmp(argv[1], "multi") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_bar);
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
		} else if ((strcmp(argv[1], "multiwrite-with-gauge") == 0 ||
			    strcmp(argv[1], "multi-with-gauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge);
		} else if ((strcmp(argv[1], "multiwrite-with-xgauge") == 0 ||
			    strcmp(argv[1], "multi-with-xgauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge_xxx);
1253
1254
1255
1256
		} else if ((strcmp(argv[1], "echo-gauge") == 0) && argc > 2) {
			skip = 2;
			printf("XXX\n0\n%s\nXXX\n", argv[2]);
			fflush(stdout);
1257
1258
1259
1260
1261
1262
1263
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1264
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1265
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1266
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1267
1268
1269
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1270
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1271
1272
1273
1274
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
1275
1276
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
1277
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1278
			skip=2;
1279
1280
1281
1282
1283
1284
1285
1286
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1287
	/* auto-start U-Boot if requested (by the "uboot" command) */
1288
	if (uboot_autostart) {
1289
1290
1291
1292
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1293
	feldev_done(handle);
1294

1295
1296
	return 0;
}