fel.c 53.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (C) 2012  Henrik Nordstrom <henrik@henriknordstrom.net>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

18
19
20
#include "common.h"
#include "portable_endian.h"
#include "progress.h"
21
#include "soc_info.h"
22

23
24
#include <libusb.h>
#include <stdint.h>
25
#include <stdbool.h>
26
27
28
29
30
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <ctype.h>
31
#include <stdarg.h>
32
#include <errno.h>
33
#include <unistd.h>
34
#include <sys/stat.h>
35

36
37
38
static const uint16_t AW_USB_VENDOR_ID  = 0x1F3A;
static const uint16_t AW_USB_PRODUCT_ID = 0xEFE8;

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/* a helper function to report libusb errors */
void usb_error(int rc, const char *caption, int exitcode)
{
	if (caption)
		fprintf(stderr, "%s ", caption);

#if defined(LIBUSBX_API_VERSION) && (LIBUSBX_API_VERSION >= 0x01000102)
	fprintf(stderr, "ERROR %d: %s\n", rc, libusb_strerror(rc));
#else
	/* assume that libusb_strerror() is missing in the libusb API */
	fprintf(stderr, "ERROR %d\n", rc);
#endif

	if (exitcode != 0)
		exit(exitcode);
}

56
57
58
59
60
61
62
63
64
65
66
67
/* 'Private' data type that will be used as "USB handle" */
typedef struct _felusb_handle {
	libusb_device_handle *handle;
	int endpoint_out, endpoint_in;
	bool iface_detached;
} felusb_handle;

/* More general FEL "device" handle, to be extended later */
typedef struct {
	felusb_handle *usb;
} feldev_handle;

68
69
70
71
72
73
74
75
76
77
78
79
struct  aw_usb_request {
	char signature[8];
	uint32_t length;
	uint32_t unknown1;	/* 0x0c000000 */
	uint16_t request;
	uint32_t length2;	/* Same as length */
	char	pad[10];
}  __attribute__((packed));

static const int AW_USB_READ = 0x11;
static const int AW_USB_WRITE = 0x12;

80
81
static int timeout = 10000; /* 10 seconds */

82
static bool verbose = false; /* If set, makes the 'fel' tool more talkative */
83
84
static uint32_t uboot_entry = 0; /* entry point (address) of U-Boot */
static uint32_t uboot_size  = 0; /* size of U-Boot binary */
85
86
87
88
89
90
91
92
93
94

static void pr_info(const char *fmt, ...)
{
	va_list arglist;
	if (verbose) {
		va_start(arglist, fmt);
		vprintf(fmt, arglist);
		va_end(arglist);
	}
}
95

96
97
98
99
100
101
102
103
104
105
/*
 * AW_USB_MAX_BULK_SEND and the timeout constant are related.
 * Both need to be selected in a way that transferring the maximum chunk size
 * with (SoC-specific) slow transfer speed won't time out.
 *
 * The 512 KiB here are chosen based on the assumption that we want a 10 seconds
 * timeout, and "slow" transfers take place at approx. 64 KiB/sec - so we can
 * expect the maximum chunk being transmitted within 8 seconds or less.
 */
static const int AW_USB_MAX_BULK_SEND = 512 * 1024; /* 512 KiB per bulk request */
106

107
108
void usb_bulk_send(libusb_device_handle *usb, int ep, const void *data,
		   size_t length, bool progress)
109
{
110
111
112
113
	/*
	 * With no progress notifications, we'll use the maximum chunk size.
	 * Otherwise, it's useful to lower the size (have more chunks) to get
	 * more frequent status updates. 128 KiB per request seem suitable.
114
	 * (Worst case of "slow" transfers -> one update every two seconds.)
115
116
	 */
	size_t max_chunk = progress ? 128 * 1024 : AW_USB_MAX_BULK_SEND;
117
118

	size_t chunk;
119
120
	int rc, sent;
	while (length > 0) {
121
122
		chunk = length < max_chunk ? length : max_chunk;
		rc = libusb_bulk_transfer(usb, ep, (void *)data, chunk, &sent, timeout);
123
124
		if (rc != 0)
			usb_error(rc, "usb_bulk_send()", 2);
125
126
		length -= sent;
		data += sent;
127
128

		if (progress)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
129
			progress_update(sent); /* notification after each chunk */
130
131
132
133
134
135
136
	}
}

void usb_bulk_recv(libusb_device_handle *usb, int ep, void *data, int length)
{
	int rc, recv;
	while (length > 0) {
137
		rc = libusb_bulk_transfer(usb, ep, data, length, &recv, timeout);
138
139
		if (rc != 0)
			usb_error(rc, "usb_bulk_recv()", 2);
140
141
142
143
144
		length -= recv;
		data += recv;
	}
}

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/* Constants taken from ${U-BOOT}/include/image.h */
#define IH_MAGIC	0x27051956	/* Image Magic Number	*/
#define IH_ARCH_ARM		2	/* ARM			*/
#define IH_TYPE_INVALID		0	/* Invalid Image	*/
#define IH_TYPE_FIRMWARE	5	/* Firmware Image	*/
#define IH_TYPE_SCRIPT		6	/* Script file		*/
#define IH_NMLEN		32	/* Image Name Length	*/

/* Additional error codes, newly introduced for get_image_type() */
#define IH_TYPE_ARCH_MISMATCH	-1

#define HEADER_NAME_OFFSET	32	/* offset of name field	*/
#define HEADER_SIZE		(HEADER_NAME_OFFSET + IH_NMLEN)

/*
 * Utility function to determine the image type from a mkimage-compatible
 * header at given buffer (address).
 *
 * For invalid headers (insufficient size or 'magic' mismatch) the function
 * will return IH_TYPE_INVALID. Negative return values might indicate
 * special error conditions, e.g. IH_TYPE_ARCH_MISMATCH signals that the
 * image doesn't match the expected (ARM) architecture.
 * Otherwise the function will return the "ih_type" field for valid headers.
 */
int get_image_type(const uint8_t *buf, size_t len)
{
	uint32_t *buf32 = (uint32_t *)buf;

	if (len <= HEADER_SIZE) /* insufficient length/size */
		return IH_TYPE_INVALID;
	if (be32toh(buf32[0]) != IH_MAGIC) /* signature mismatch */
		return IH_TYPE_INVALID;
	/* For sunxi, we always expect ARM architecture here */
	if (buf[29] != IH_ARCH_ARM)
		return IH_TYPE_ARCH_MISMATCH;

	/* assume a valid header, and return ih_type */
	return buf[30];
}

185
static void aw_send_usb_request(feldev_handle *dev, int type, int length)
186
{
187
188
189
190
191
192
193
	struct aw_usb_request req = {
		.signature = "AWUC",
		.request = htole16(type),
		.length = htole32(length),
		.unknown1 = htole32(0x0c000000)
	};
	req.length2 = req.length;
194
	usb_bulk_send(dev->usb->handle, dev->usb->endpoint_out,
195
		      &req, sizeof(req), false);
196
197
}

198
static void aw_read_usb_response(feldev_handle *dev)
199
200
{
	char buf[13];
201
	usb_bulk_recv(dev->usb->handle, dev->usb->endpoint_in,
202
		      buf, sizeof(buf));
203
204
205
	assert(strcmp(buf, "AWUS") == 0);
}

206
207
static void aw_usb_write(feldev_handle *dev, const void *data, size_t len,
			 bool progress)
208
{
209
	aw_send_usb_request(dev, AW_USB_WRITE, len);
210
	usb_bulk_send(dev->usb->handle, dev->usb->endpoint_out,
211
212
		      data, len, progress);
	aw_read_usb_response(dev);
213
214
}

215
static void aw_usb_read(feldev_handle *dev, const void *data, size_t len)
216
{
217
	aw_send_usb_request(dev, AW_USB_READ, len);
218
219
	usb_bulk_send(dev->usb->handle, dev->usb->endpoint_in,
		      data, len, false);
220
	aw_read_usb_response(dev);
221
222
223
224
225
226
227
228
229
230
231
232
233
234
}

struct aw_fel_request {
	uint32_t request;
	uint32_t address;
	uint32_t length;
	uint32_t pad;
};

static const int AW_FEL_VERSION = 0x001;
static const int AW_FEL_1_WRITE = 0x101;
static const int AW_FEL_1_EXEC  = 0x102;
static const int AW_FEL_1_READ  = 0x103;

235
236
void aw_send_fel_request(feldev_handle *dev, int type,
			 uint32_t addr, uint32_t length)
237
{
238
239
240
241
242
	struct aw_fel_request req = {
		.request = htole32(type),
		.address = htole32(addr),
		.length = htole32(length)
	};
243
	aw_usb_write(dev, &req, sizeof(req), false);
244
245
}

246
void aw_read_fel_status(feldev_handle *dev)
247
248
{
	char buf[8];
249
	aw_usb_read(dev, buf, sizeof(buf));
250
251
}

252
void aw_fel_get_version(feldev_handle *dev, struct aw_fel_version *buf)
253
{
254
255
256
	aw_send_fel_request(dev, AW_FEL_VERSION, 0, 0);
	aw_usb_read(dev, buf, sizeof(*buf));
	aw_read_fel_status(dev);
257

258
259
260
261
262
263
264
265
	buf->soc_id = (le32toh(buf->soc_id) >> 8) & 0xFFFF;
	buf->unknown_0a = le32toh(buf->unknown_0a);
	buf->protocol = le32toh(buf->protocol);
	buf->scratchpad = le16toh(buf->scratchpad);
	buf->pad[0] = le32toh(buf->pad[0]);
	buf->pad[1] = le32toh(buf->pad[1]);
}

266
void aw_fel_print_version(feldev_handle *dev)
267
268
{
	struct aw_fel_version buf;
269
	aw_fel_get_version(dev, &buf);
270

Henrik Nordstrom's avatar
Henrik Nordstrom committed
271
	const char *soc_name="unknown";
272
	switch (buf.soc_id) {
Bernhard Nortmann's avatar
Bernhard Nortmann committed
273
274
275
276
277
	case 0x1623: soc_name="A10"; break;
	case 0x1625: soc_name="A13"; break;
	case 0x1633: soc_name="A31"; break;
	case 0x1651: soc_name="A20"; break;
	case 0x1650: soc_name="A23"; break;
278
	case 0x1689: soc_name="A64"; break;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
279
280
281
282
	case 0x1639: soc_name="A80"; break;
	case 0x1667: soc_name="A33"; break;
	case 0x1673: soc_name="A83T"; break;
	case 0x1680: soc_name="H3"; break;
283
	case 0x1701: soc_name="R40"; break;
284
	case 0x1718: soc_name="H5"; break;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
285
286
	}

287
288
289
290
	printf("%.8s soc=%08x(%s) %08x ver=%04x %02x %02x scratchpad=%08x %08x %08x\n",
		buf.signature, buf.soc_id, soc_name, buf.unknown_0a,
		buf.protocol, buf.unknown_12, buf.unknown_13,
		buf.scratchpad, buf.pad[0], buf.pad[1]);
291
292
}

293
void aw_fel_read(feldev_handle *dev, uint32_t offset, void *buf, size_t len)
294
{
295
296
297
	aw_send_fel_request(dev, AW_FEL_1_READ, offset, len);
	aw_usb_read(dev, buf, len);
	aw_read_fel_status(dev);
298
299
}

300
void aw_fel_write(feldev_handle *dev, void *buf, uint32_t offset, size_t len)
301
{
302
303
304
	aw_send_fel_request(dev, AW_FEL_1_WRITE, offset, len);
	aw_usb_write(dev, buf, len, false);
	aw_read_fel_status(dev);
305
306
}

307
void aw_fel_execute(feldev_handle *dev, uint32_t offset)
308
{
309
310
	aw_send_fel_request(dev, AW_FEL_1_EXEC, offset, 0);
	aw_read_fel_status(dev);
311
312
}

313
314
315
316
317
318
319
/*
 * This function is a higher-level wrapper for the FEL write functionality.
 * Unlike aw_fel_write() above - which is reserved for internal use - this
 * routine is meant to be called from "user" code, and supports (= allows)
 * progress callbacks.
 * The return value represents elapsed time in seconds (needed for execution).
 */
320
double aw_write_buffer(feldev_handle *dev, void *buf, uint32_t offset,
321
		       size_t len, bool progress)
322
323
324
325
326
327
328
{
	/* safeguard against overwriting an already loaded U-Boot binary */
	if (uboot_size > 0 && offset <= uboot_entry + uboot_size
			   && offset + len >= uboot_entry)
	{
		fprintf(stderr, "ERROR: Attempt to overwrite U-Boot! "
			"Request 0x%08X-0x%08X overlaps 0x%08X-0x%08X.\n",
329
			offset, (uint32_t)(offset + len),
330
331
332
333
			uboot_entry, uboot_entry + uboot_size);
		exit(1);
	}
	double start = gettime();
334
335
336
	aw_send_fel_request(dev, AW_FEL_1_WRITE, offset, len);
	aw_usb_write(dev, buf, len, progress);
	aw_read_fel_status(dev);
337
338
339
	return gettime() - start;
}

340
341
342
343
344
345
void hexdump(void *data, uint32_t offset, size_t size)
{
	size_t j;
	unsigned char *buf = data;
	for (j = 0; j < size; j+=16) {
		size_t i;
346
		printf("%08zx: ", offset + j);
347
		for (i = 0; i < 16; i++) {
348
			if (j + i < size)
349
				printf("%02x ", buf[j+i]);
350
			else
351
352
				printf("__ ");
		}
353
		putchar(' ');
354
		for (i = 0; i < 16; i++) {
355
356
357
358
			if (j + i >= size)
				putchar('.');
			else
				putchar(isprint(buf[j+i]) ? buf[j+i] : '.');
359
		}
360
		putchar('\n');
361
362
	}
}
363

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
unsigned int file_size(const char *filename)
{
	struct stat st;
	if (stat(filename, &st) != 0) {
		fprintf(stderr, "stat() error on file \"%s\": %s\n", filename,
			strerror(errno));
		exit(1);
	}
	if (!S_ISREG(st.st_mode)) {
		fprintf(stderr, "error: \"%s\" is not a regular file\n", filename);
		exit(1);
	}
	return st.st_size;
}

379
380
381
382
int save_file(const char *name, void *data, size_t size)
{
	FILE *out = fopen(name, "wb");
	int rc;
383
	if (!out) {
384
		perror("Failed to open output file");
385
386
		exit(1);
	}
387
388
389
390
391
	rc = fwrite(data, size, 1, out);
	fclose(out);
	return rc;
}

392
393
394
395
396
397
398
399
400
401
void *load_file(const char *name, size_t *size)
{
	size_t bufsize = 8192;
	size_t offset = 0;
	char *buf = malloc(bufsize);
	FILE *in;
	if (strcmp(name, "-") == 0)
		in = stdin;
	else
		in = fopen(name, "rb");
402
	if (!in) {
403
		perror("Failed to open input file");
404
405
		exit(1);
	}
406
	
Bernhard Nortmann's avatar
Bernhard Nortmann committed
407
	while (true) {
408
409
		ssize_t len = bufsize - offset;
		ssize_t n = fread(buf+offset, 1, len, in);
410
		offset += n;
411
		if (n < len)
412
413
414
415
416
417
418
419
420
421
422
			break;
		bufsize <<= 1;
		buf = realloc(buf, bufsize);
	}
	if (size) 
		*size = offset;
	if (in != stdin)
		fclose(in);
	return buf;
}

423
void aw_fel_hexdump(feldev_handle *dev, uint32_t offset, size_t size)
424
425
{
	unsigned char buf[size];
426
	aw_fel_read(dev, offset, buf, size);
427
428
429
	hexdump(buf, offset, size);
}

430
void aw_fel_dump(feldev_handle *dev, uint32_t offset, size_t size)
431
432
{
	unsigned char buf[size];
433
	aw_fel_read(dev, offset, buf, size);
434
435
	fwrite(buf, size, 1, stdout);
}
436
void aw_fel_fill(feldev_handle *dev, uint32_t offset, size_t size, unsigned char value)
437
438
{
	unsigned char buf[size];
Henrik Nordstrom's avatar
Henrik Nordstrom committed
439
	memset(buf, value, size);
440
	aw_write_buffer(dev, buf, offset, size, false);
441
442
}

443
soc_info_t *aw_fel_get_soc_info(feldev_handle *dev)
444
{
445
446
	/* persistent SoC info, retrieves result pointer once and caches it */
	static soc_info_t *result = NULL;
447
448
	if (result == NULL) {
		struct aw_fel_version buf;
449
		aw_fel_get_version(dev, &buf);
450

451
		result = get_soc_info_from_version(&buf);
452
453
	}
	return result;
454
455
456
457
458
459
}

static uint32_t fel_to_spl_thunk[] = {
	#include "fel-to-spl-thunk.h"
};

460
461
462
#define	DRAM_BASE		0x40000000
#define	DRAM_SIZE		0x80000000

463
uint32_t aw_read_arm_cp_reg(feldev_handle *dev, soc_info_t *soc_info,
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
			    uint32_t coproc, uint32_t opc1, uint32_t crn,
			    uint32_t crm, uint32_t opc2)
{
	uint32_t val = 0;
	uint32_t opcode = 0xEE000000 | (1 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)    |
			  ((crn & 15) << 16)    |
			  ((coproc & 15) << 8)  |
			  ((opc2 & 7) << 5)     |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(opcode),     /* mrc  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xe58f0000), /* str  r0, [pc]                         */
		htole32(0xe12fff1e), /* bx   lr                               */
	};
479
480
481
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
	aw_fel_read(dev, soc_info->scratch_addr + 12, &val, sizeof(val));
482
483
484
	return le32toh(val);
}

485
void aw_write_arm_cp_reg(feldev_handle *dev, soc_info_t *soc_info,
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
			 uint32_t coproc, uint32_t opc1, uint32_t crn,
			 uint32_t crm, uint32_t opc2, uint32_t val)
{
	uint32_t opcode = 0xEE000000 | (0 << 20) | (1 << 4) |
			  ((opc1 & 7) << 21)                |
			  ((crn & 15) << 16)                |
			  ((coproc & 15) << 8)              |
			  ((opc2 & 7) << 5)                 |
			  (crm & 15);
	uint32_t arm_code[] = {
		htole32(0xe59f000c), /* ldr  r0, [pc, #12]                    */
		htole32(opcode),     /* mcr  coproc, opc1, r0, crn, crm, opc2 */
		htole32(0xf57ff04f), /* dsb  sy                               */
		htole32(0xf57ff06f), /* isb  sy                               */
		htole32(0xe12fff1e), /* bx   lr                               */
		htole32(val)
	};
503
504
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
505
506
}

507
508
509
510
511
512
513
514
515
516
/*
 * We don't want the scratch code/buffer to exceed a maximum size of 0x400 bytes
 * (256 32-bit words) on readl_n/writel_n transfers. To guarantee this, we have
 * to account for the amount of space the ARM code uses.
 */
#define LCODE_ARM_WORDS  12 /* word count of the [read/write]l_n scratch code */
#define LCODE_ARM_SIZE   (LCODE_ARM_WORDS << 2) /* code size in bytes */
#define LCODE_MAX_TOTAL  0x100 /* max. words in buffer */
#define LCODE_MAX_WORDS  (LCODE_MAX_TOTAL - LCODE_ARM_WORDS) /* data words */

517
/* multiple "readl" from sequential addresses to a destination buffer */
518
void aw_fel_readl_n(feldev_handle *dev, uint32_t addr,
519
520
		    uint32_t *dst, size_t count)
{
521
522
523
524
525
526
	if (count == 0) return;
	if (count > LCODE_MAX_WORDS) {
		fprintf(stderr,
			"ERROR: Max. word count exceeded, truncating aw_fel_readl_n() transfer\n");
		count = LCODE_MAX_WORDS;
	}
527
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
528
529

	assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
530
	uint32_t arm_code[] = {
531
532
533
534
535
536
537
538
539
540
541
542
543
544
		htole32(0xe59f0020), /* ldr  r0, [pc, #32] ; ldr r0,[read_addr]  */
		htole32(0xe28f1024), /* add  r1, pc, #36   ; adr r1, read_data   */
		htole32(0xe59f201c), /* ldr  r2, [pc, #28] ; ldr r2,[read_count] */
		htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp	r2, #LCODE_MAX_WORDS */
		htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt	r2, #LCODE_MAX_WORDS */
		/* read_loop: */
		htole32(0xe2522001), /* subs r2, r2, #1    ; r2 -= 1             */
		htole32(0x412fff1e), /* bxmi lr            ; return if (r2 < 0)  */
		htole32(0xe4903004), /* ldr  r3, [r0], #4  ; load and post-inc   */
		htole32(0xe4813004), /* str  r3, [r1], #4  ; store and post-inc  */
		htole32(0xeafffffa), /* b    read_loop                           */
		htole32(addr),       /* read_addr */
		htole32(count)       /* read_count */
		/* read_data (buffer) follows, i.e. values go here */
545
	};
546
547
548
	assert(sizeof(arm_code) == LCODE_ARM_SIZE);

	/* scratch buffer setup: transfers ARM code, including addr and count */
549
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
550
	/* execute code, read back the result */
551
	aw_fel_execute(dev, soc_info->scratch_addr);
552
	uint32_t buffer[count];
553
	aw_fel_read(dev, soc_info->scratch_addr + LCODE_ARM_SIZE,
554
555
556
557
558
		    buffer, sizeof(buffer));
	/* extract values to destination buffer */
	uint32_t *val = buffer;
	while (count-- > 0)
		*dst++ = le32toh(*val++);
559
560
561
}

/* "readl" of a single value */
562
uint32_t aw_fel_readl(feldev_handle *dev, uint32_t addr)
563
564
{
	uint32_t val;
565
	aw_fel_readl_n(dev, addr, &val, 1);
566
567
568
	return val;
}

569
570
571
572
/*
 * aw_fel_readl_n() wrapper that can handle large transfers. If necessary,
 * those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
 */
573
void fel_readl_n(feldev_handle *dev, uint32_t addr, uint32_t *dst, size_t count)
574
575
576
{
	while (count > 0) {
		size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
577
		aw_fel_readl_n(dev, addr, dst, n);
578
579
580
581
582
583
		addr += n * sizeof(uint32_t);
		dst += n;
		count -= n;
	}
}

584
/* multiple "writel" from a source buffer to sequential addresses */
585
void aw_fel_writel_n(feldev_handle *dev, uint32_t addr,
586
587
		     uint32_t *src, size_t count)
{
588
589
590
591
592
593
	if (count == 0) return;
	if (count > LCODE_MAX_WORDS) {
		fprintf(stderr,
			"ERROR: Max. word count exceeded, truncating aw_fel_writel_n() transfer\n");
		count = LCODE_MAX_WORDS;
	}
594
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

	assert(LCODE_MAX_WORDS < 256); /* protect against corruption of ARM code */
	/*
	 * We need a fixed array size to allow for (partial) initialization,
	 * so we'll claim the maximum total number of words (0x100) here.
	 */
	uint32_t arm_code[LCODE_MAX_TOTAL] = {
		htole32(0xe59f0020), /* ldr  r0, [pc, #32] ; ldr r0,[write_addr] */
		htole32(0xe28f1024), /* add  r1, pc, #36   ; adr r1, write_data  */
		htole32(0xe59f201c), /* ldr  r2, [pc, #28] ; ldr r2,[write_count]*/
		htole32(0xe3520000 + LCODE_MAX_WORDS), /* cmp	r2, #LCODE_MAX_WORDS */
		htole32(0xc3a02000 + LCODE_MAX_WORDS), /* movgt	r2, #LCODE_MAX_WORDS */
		/* write_loop: */
		htole32(0xe2522001), /* subs r2, r2, #1    ; r2 -= 1             */
		htole32(0x412fff1e), /* bxmi lr            ; return if (r2 < 0)  */
		htole32(0xe4913004), /* ldr  r3, [r1], #4  ; load and post-inc   */
		htole32(0xe4803004), /* str  r3, [r0], #4  ; store and post-inc  */
		htole32(0xeafffffa), /* b    write_loop                          */
		htole32(addr),       /* write_addr */
		htole32(count)       /* write_count */
		/* write_data (buffer) follows, i.e. values taken from here */
616
	};
617
618
619
620
621
622

	/* copy values from source buffer */
	size_t i;
	for (i = 0; i < count; i++)
		arm_code[LCODE_ARM_WORDS + i] = htole32(*src++);
	/* scratch buffer setup: transfers ARM code and data */
623
	aw_fel_write(dev, arm_code, soc_info->scratch_addr,
624
625
	             (LCODE_ARM_WORDS + count) * sizeof(uint32_t));
	/* execute, and we're done */
626
	aw_fel_execute(dev, soc_info->scratch_addr);
627
628
629
}

/* "writel" of a single value */
630
void aw_fel_writel(feldev_handle *dev, uint32_t addr, uint32_t val)
631
{
632
	aw_fel_writel_n(dev, addr, &val, 1);
633
634
}

635
636
637
638
/*
 * aw_fel_writel_n() wrapper that can handle large transfers. If necessary,
 * those will be done in separate 'chunks' of no more than LCODE_MAX_WORDS.
 */
639
void fel_writel_n(feldev_handle *dev, uint32_t addr, uint32_t *src, size_t count)
640
641
642
{
	while (count > 0) {
		size_t n = count > LCODE_MAX_WORDS ? LCODE_MAX_WORDS : count;
643
		aw_fel_writel_n(dev, addr, src, n);
644
645
646
647
648
649
		addr += n * sizeof(uint32_t);
		src += n;
		count -= n;
	}
}

650
void aw_fel_print_sid(feldev_handle *dev)
651
{
652
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
653
654
655
656
	if (soc_info->sid_addr) {
		pr_info("SID key (e-fuses) at 0x%08X\n", soc_info->sid_addr);

		uint32_t key[4];
657
		aw_fel_readl_n(dev, soc_info->sid_addr, key, 4);
658
659

		unsigned int i;
Bernhard Nortmann's avatar
Bernhard Nortmann committed
660
		/* output SID in "xxxxxxxx:xxxxxxxx:xxxxxxxx:xxxxxxxx" format */
661
		for (i = 0; i <= 3; i++)
Bernhard Nortmann's avatar
Bernhard Nortmann committed
662
			printf("%08x%c", key[i], i < 3 ? ':' : '\n');
663
664
665
666
667
668
	} else {
		printf("SID registers for your SoC (id=%04X) are unknown or inaccessible.\n",
			soc_info->soc_id);
	}
}

669
void aw_enable_l2_cache(feldev_handle *dev, soc_info_t *soc_info)
670
671
672
673
674
675
676
677
{
	uint32_t arm_code[] = {
		htole32(0xee112f30), /* mrc        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe3822002), /* orr        r2, r2, #2                */
		htole32(0xee012f30), /* mcr        15, 0, r2, cr1, cr0, {1}  */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

678
679
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
680
681
}

682
void aw_get_stackinfo(feldev_handle *dev, soc_info_t *soc_info,
683
                      uint32_t *sp_irq, uint32_t *sp)
684
685
686
687
688
689
690
691
692
693
694
{
	uint32_t results[2] = { 0 };
#if 0
	/* Does not work on Cortex-A8 (needs Virtualization Extensions) */
	uint32_t arm_code[] = {
		htole32(0xe1010300), /* mrs        r0, SP_irq                */
		htole32(0xe58f0004), /* str        r0, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

695
696
697
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
	aw_fel_read(dev, soc_info->scratch_addr + 0x10, results, 8);
698
699
700
701
702
703
704
705
706
707
708
709
710
711
#else
	/* Works everywhere */
	uint32_t arm_code[] = {
		htole32(0xe10f0000), /* mrs        r0, CPSR                  */
		htole32(0xe3c0101f), /* bic        r1, r0, #31               */
		htole32(0xe3811012), /* orr        r1, r1, #18               */
		htole32(0xe121f001), /* msr        CPSR_c, r1                */
		htole32(0xe1a0100d), /* mov        r1, sp                    */
		htole32(0xe121f000), /* msr        CPSR_c, r0                */
		htole32(0xe58f1004), /* str        r1, [pc, #4]              */
		htole32(0xe58fd004), /* str        sp, [pc, #4]              */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

712
713
714
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
	aw_fel_read(dev, soc_info->scratch_addr + 0x24, results, 8);
715
716
717
718
719
#endif
	*sp_irq = le32toh(results[0]);
	*sp     = le32toh(results[1]);
}

720
uint32_t aw_get_ttbr0(feldev_handle *dev, soc_info_t *soc_info)
721
{
722
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 0);
723
724
}

725
uint32_t aw_get_ttbcr(feldev_handle *dev, soc_info_t *soc_info)
726
{
727
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 2);
728
729
}

730
uint32_t aw_get_dacr(feldev_handle *dev, soc_info_t *soc_info)
731
{
732
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 3, 0, 0);
733
734
}

735
uint32_t aw_get_sctlr(feldev_handle *dev, soc_info_t *soc_info)
736
{
737
	return aw_read_arm_cp_reg(dev, soc_info, 15, 0, 1, 0, 0);
738
739
}

740
void aw_set_ttbr0(feldev_handle *dev, soc_info_t *soc_info,
741
742
		  uint32_t ttbr0)
{
743
	return aw_write_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 0, ttbr0);
744
745
}

746
void aw_set_ttbcr(feldev_handle *dev, soc_info_t *soc_info,
747
748
		  uint32_t ttbcr)
{
749
	return aw_write_arm_cp_reg(dev, soc_info, 15, 0, 2, 0, 2, ttbcr);
750
751
}

752
void aw_set_dacr(feldev_handle *dev, soc_info_t *soc_info,
753
754
		 uint32_t dacr)
{
755
	aw_write_arm_cp_reg(dev, soc_info, 15, 0, 3, 0, 0, dacr);
756
757
}

758
void aw_set_sctlr(feldev_handle *dev, soc_info_t *soc_info,
759
760
		  uint32_t sctlr)
{
761
	aw_write_arm_cp_reg(dev, soc_info, 15, 0, 1, 0, 0, sctlr);
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
}

/*
 * Reconstruct the same MMU translation table as used by the A20 BROM.
 * We are basically reverting the changes, introduced in newer SoC
 * variants. This works fine for the SoC variants with the memory
 * layout similar to A20 (the SRAM is in the first megabyte of the
 * address space and the BROM is in the last megabyte of the address
 * space).
 */
uint32_t *aw_generate_mmu_translation_table(void)
{
	uint32_t *tt = malloc(4096 * sizeof(uint32_t));
	uint32_t i;

	/*
	 * Direct mapping using 1MB sections with TEXCB=00000 (Strongly
	 * ordered) for all memory except the first and the last sections,
	 * which have TEXCB=00100 (Normal). Domain bits are set to 1111
	 * and AP bits are set to 11, but this is mostly irrelevant.
	 */
	for (i = 0; i < 4096; i++)
		tt[i] = 0x00000DE2 | (i << 20);
	tt[0x000] |= 0x1000;
	tt[0xFFF] |= 0x1000;

	return tt;
}

791
uint32_t *aw_backup_and_disable_mmu(feldev_handle *dev,
792
                                    soc_info_t *soc_info)
793
{
794
	uint32_t *tt = NULL;
795
	uint32_t sctlr, ttbr0, ttbcr, dacr;
796
797
798
	uint32_t i;

	uint32_t arm_code[] = {
799
		/* Disable I-cache, MMU and branch prediction */
800
801
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3c00001), /* bic        r0, r0, #1                */
802
803
		htole32(0xe3c00a01), /* bic        r0, r0, #4096             */
		htole32(0xe3c00b02), /* bic        r0, r0, #2048             */
804
805
806
807
808
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

809
810
811
812
813
814
815
816
817
818
819
	/*
	 * Below are some checks for the register values, which are known
	 * to be initialized in this particular way by the existing BROM
	 * implementations. We don't strictly need them to exactly match,
	 * but still have these safety guards in place in order to detect
	 * and review any potential configuration changes in future SoC
	 * variants (if one of these checks fails, then it is not a serious
	 * problem but more likely just an indication that one of these
	 * checks needs to be relaxed).
	 */

820
	/* Basically, ignore M/Z/I/V/UNK bits and expect no TEX remap */
821
	sctlr = aw_get_sctlr(dev, soc_info);
822
	if ((sctlr & ~((0x7 << 11) | (1 << 6) | 1)) != 0x00C50038) {
823
824
825
826
		fprintf(stderr, "Unexpected SCTLR (%08X)\n", sctlr);
		exit(1);
	}

827
	if (!(sctlr & 1)) {
828
829
		pr_info("MMU is not enabled by BROM\n");
		return NULL;
830
831
	}

832
	dacr = aw_get_dacr(dev, soc_info);
833
834
835
836
837
	if (dacr != 0x55555555) {
		fprintf(stderr, "Unexpected DACR (%08X)\n", dacr);
		exit(1);
	}

838
	ttbcr = aw_get_ttbcr(dev, soc_info);
839
840
	if (ttbcr != 0x00000000) {
		fprintf(stderr, "Unexpected TTBCR (%08X)\n", ttbcr);
841
842
843
		exit(1);
	}

844
	ttbr0 = aw_get_ttbr0(dev, soc_info);
845
846
847
848
849
	if (ttbr0 & 0x3FFF) {
		fprintf(stderr, "Unexpected TTBR0 (%08X)\n", ttbr0);
		exit(1);
	}

850
	tt = malloc(16 * 1024);
851
	pr_info("Reading the MMU translation table from 0x%08X\n", ttbr0);
852
	aw_fel_read(dev, ttbr0, tt, 16 * 1024);
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
	for (i = 0; i < 4096; i++)
		tt[i] = le32toh(tt[i]);

	/* Basic sanity checks to be sure that this is a valid table */
	for (i = 0; i < 4096; i++) {
		if (((tt[i] >> 1) & 1) != 1 || ((tt[i] >> 18) & 1) != 0) {
			fprintf(stderr, "MMU: not a section descriptor\n");
			exit(1);
		}
		if ((tt[i] >> 20) != i) {
			fprintf(stderr, "MMU: not a direct mapping\n");
			exit(1);
		}
	}

868
	pr_info("Disabling I-cache, MMU and branch prediction...");
869
870
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
871
872
873
874
875
	pr_info(" done.\n");

	return tt;
}

876
void aw_restore_and_enable_mmu(feldev_handle *dev,
877
                               soc_info_t *soc_info,
878
                               uint32_t *tt)
879
880
{
	uint32_t i;
881
	uint32_t ttbr0 = aw_get_ttbr0(dev, soc_info);
882
883

	uint32_t arm_code[] = {
884
885
886
887
888
889
890
891
		/* Invalidate I-cache, TLB and BTB */
		htole32(0xe3a00000), /* mov        r0, #0                    */
		htole32(0xee080f17), /* mcr        15, 0, r0, cr8, cr7, {0}  */
		htole32(0xee070f15), /* mcr        15, 0, r0, cr7, cr5, {0}  */
		htole32(0xee070fd5), /* mcr        15, 0, r0, cr7, cr5, {6}  */
		htole32(0xf57ff04f), /* dsb        sy                        */
		htole32(0xf57ff06f), /* isb        sy                        */
		/* Enable I-cache, MMU and branch prediction */
892
893
		htole32(0xee110f10), /* mrc        15, 0, r0, cr1, cr0, {0}  */
		htole32(0xe3800001), /* orr        r0, r0, #1                */
894
895
		htole32(0xe3800a01), /* orr        r0, r0, #4096             */
		htole32(0xe3800b02), /* orr        r0, r0, #2048             */
896
897
898
899
900
		htole32(0xee010f10), /* mcr        15, 0, r0, cr1, cr0, {0}  */
		/* Return back to FEL */
		htole32(0xe12fff1e), /* bx         lr                        */
	};

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
	pr_info("Setting write-combine mapping for DRAM.\n");
	for (i = (DRAM_BASE >> 20); i < ((DRAM_BASE + DRAM_SIZE) >> 20); i++) {
		/* Clear TEXCB bits */
		tt[i] &= ~((7 << 12) | (1 << 3) | (1 << 2));
		/* Set TEXCB to 00100 (Normal uncached mapping) */
		tt[i] |= (1 << 12);
	}

	pr_info("Setting cached mapping for BROM.\n");
	/* Clear TEXCB bits first */
	tt[0xFFF] &= ~((7 << 12) | (1 << 3) | (1 << 2));
	/* Set TEXCB to 00111 (Normal write-back cached mapping) */
	tt[0xFFF] |= (1 << 12) | /* TEX */
		     (1 << 3)  | /* C */
		     (1 << 2);   /* B */

917
918
919
	pr_info("Writing back the MMU translation table.\n");
	for (i = 0; i < 4096; i++)
		tt[i] = htole32(tt[i]);
920
	aw_fel_write(dev, tt, ttbr0, 16 * 1024);
921

922
	pr_info("Enabling I-cache, MMU and branch prediction...");
923
924
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
	aw_fel_execute(dev, soc_info->scratch_addr);
925
926
927
928
929
	pr_info(" done.\n");

	free(tt);
}

930
931
932
933
/*
 * Maximum size of SPL, at the same time this is the start offset
 * of the main U-Boot image within u-boot-sunxi-with-spl.bin
 */
934
#define SPL_LEN_LIMIT 0x8000
935

936
void aw_fel_write_and_execute_spl(feldev_handle *dev, uint8_t *buf, size_t len)
937
{
938
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
939
940
941
942
	sram_swap_buffers *swap_buffers;
	char header_signature[9] = { 0 };
	size_t i, thunk_size;
	uint32_t *thunk_buf;
943
	uint32_t sp, sp_irq;
944
	uint32_t spl_checksum, spl_len, spl_len_limit = SPL_LEN_LIMIT;
945
	uint32_t *buf32 = (uint32_t *)buf;
946
	uint32_t cur_addr = soc_info->spl_addr;
947
	uint32_t *tt = NULL;
948

949
	if (!soc_info || !soc_info->swap_buffers) {
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
		fprintf(stderr, "SPL: Unsupported SoC type\n");
		exit(1);
	}

	if (len < 32 || memcmp(buf + 4, "eGON.BT0", 8) != 0) {
		fprintf(stderr, "SPL: eGON header is not found\n");
		exit(1);
	}

	spl_checksum = 2 * le32toh(buf32[3]) - 0x5F0A6C39;
	spl_len = le32toh(buf32[4]);

	if (spl_len > len || (spl_len % 4) != 0) {
		fprintf(stderr, "SPL: bad length in the eGON header\n");
		exit(1);
	}

	len = spl_len;
	for (i = 0; i < len / 4; i++)
		spl_checksum -= le32toh(buf32[i]);

	if (spl_checksum != 0) {
		fprintf(stderr, "SPL: checksum check failed\n");
		exit(1);
	}

976
	if (soc_info->needs_l2en) {
977
		pr_info("Enabling the L2 cache\n");
978
		aw_enable_l2_cache(dev, soc_info);
979
980
	}

981
	aw_get_stackinfo(dev, soc_info, &sp_irq, &sp);
982
983
	pr_info("Stack pointers: sp_irq=0x%08X, sp=0x%08X\n", sp_irq, sp);

984
	tt = aw_backup_and_disable_mmu(dev, soc_info);
985
986
	if (!tt && soc_info->mmu_tt_addr) {
		if (soc_info->mmu_tt_addr & 0x3FFF) {
987
988
989
990
			fprintf(stderr, "SPL: 'mmu_tt_addr' must be 16K aligned\n");
			exit(1);
		}
		pr_info("Generating the new MMU translation table at 0x%08X\n",
991
		        soc_info->mmu_tt_addr);
992
993
994
995
996
997
998
999
1000
1001
		/*
		 * These settings are used by the BROM in A10/A13/A20 and
		 * we replicate them here when enabling the MMU. The DACR
		 * value 0x55555555 means that accesses are checked against
		 * the permission bits in the translation tables for all
		 * domains. The TTBCR value 0x00000000 means that the short
		 * descriptor translation table format is used, TTBR0 is used
		 * for all the possible virtual addresses (N=0) and that the
		 * translation table must be aligned at a 16K boundary.
		 */
1002
1003
1004
		aw_set_dacr(dev, soc_info, 0x55555555);
		aw_set_ttbcr(dev, soc_info, 0x00000000);
		aw_set_ttbr0(dev, soc_info, soc_info->mmu_tt_addr);
1005
1006
		tt = aw_generate_mmu_translation_table();
	}
1007

1008
	swap_buffers = soc_info->swap_buffers;
1009
	for (i = 0; swap_buffers[i].size; i++) {
1010
1011
1012
		if ((swap_buffers[i].buf2 >= soc_info->spl_addr) &&
		    (swap_buffers[i].buf2 < soc_info->spl_addr + spl_len_limit))
			spl_len_limit = swap_buffers[i].buf2 - soc_info->spl_addr;
1013
1014
		if (len > 0 && cur_addr < swap_buffers[i].buf1) {
			uint32_t tmp = swap_buffers[i].buf1 - cur_addr;
1015
1016
			if (tmp > len)
				tmp = len;
1017
			aw_fel_write(dev, buf, cur_addr, tmp);
1018
			cur_addr += tmp;
1019
1020
1021
			buf += tmp;
			len -= tmp;
		}
1022
		if (len > 0 && cur_addr == swap_buffers[i].buf1) {
1023
1024
1025
			uint32_t tmp = swap_buffers[i].size;
			if (tmp > len)
				tmp = len;
1026
			aw_fel_write(dev, buf, swap_buffers[i].buf2, tmp);
1027
			cur_addr += tmp;
1028
1029
1030
1031
1032
1033
			buf += tmp;
			len -= tmp;
		}
	}

	/* Clarify the SPL size limitations, and bail out if they are not met */
1034
1035
	if (soc_info->thunk_addr < spl_len_limit)
		spl_len_limit = soc_info->thunk_addr;
1036
1037
1038
1039
1040
1041
1042
1043
1044

	if (spl_len > spl_len_limit) {
		fprintf(stderr, "SPL: too large (need %d, have %d)\n",
			(int)spl_len, (int)spl_len_limit);
		exit(1);
	}

	/* Write the remaining part of the SPL */
	if (len > 0)
1045
		aw_fel_write(dev, buf, cur_addr, len);
1046

1047
	thunk_size = sizeof(fel_to_spl_thunk) + sizeof(soc_info->spl_addr) +
1048
		     (i + 1) * sizeof(*swap_buffers);
1049

1050
	if (thunk_size > soc_info->thunk_size) {
1051
		fprintf(stderr, "SPL: bad thunk size (need %d, have %d)\n",
1052
			(int)sizeof(fel_to_spl_thunk), soc_info->thunk_size);
1053
1054
1055
1056
1057
1058
		exit(1);
	}

	thunk_buf = malloc(thunk_size);
	memcpy(thunk_buf, fel_to_spl_thunk, sizeof(fel_to_spl_thunk));
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t),
1059
	       &soc_info->spl_addr, sizeof(soc_info->spl_addr));
1060
	memcpy(thunk_buf + sizeof(fel_to_spl_thunk) / sizeof(uint32_t) + 1,
1061
1062
1063
1064
1065
	       swap_buffers, (i + 1) * sizeof(*swap_buffers));

	for (i = 0; i < thunk_size / sizeof(uint32_t); i++)
		thunk_buf[i] = htole32(thunk_buf[i]);

1066
	pr_info("=> Executing the SPL...");
1067
1068
	aw_fel_write(dev, thunk_buf, soc_info->thunk_addr, thunk_size);
	aw_fel_execute(dev, soc_info->thunk_addr);
1069
	pr_info(" done.\n");
1070
1071
1072
1073
1074
1075
1076

	free(thunk_buf);

	/* TODO: Try to find and fix the bug, which needs this workaround */
	usleep(250000);

	/* Read back the result and check if everything was fine */
1077
	aw_fel_read(dev, soc_info->spl_addr + 4, header_signature, 8);
1078
1079
1080
1081
1082
	if (strcmp(header_signature, "eGON.FEL") != 0) {
		fprintf(stderr, "SPL: failure code '%s'\n",
			header_signature);
		exit(1);
	}
1083

1084
	/* re-enable the MMU if it was enabled by BROM */
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1085
	if (tt != NULL)
1086
		aw_restore_and_enable_mmu(dev, soc_info, tt);
1087
1088
}

1089
1090
1091
1092
1093
1094
/*
 * This function tests a given buffer address and length for a valid U-Boot
 * image. Upon success, the image data gets transferred to the default memory
 * address stored within the image header; and the function preserves the
 * U-Boot entry point (offset) and size values.
 */
1095
void aw_fel_write_uboot_image(feldev_handle *dev, uint8_t *buf, size_t len)
1096
1097
1098
1099
1100
1101
{
	if (len <= HEADER_SIZE)
		return; /* Insufficient size (no actual data), just bail out */

	uint32_t *buf32 = (uint32_t *)buf;

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
	/* Check for a valid mkimage header */
	int image_type = get_image_type(buf, len);
	if (image_type <= IH_TYPE_INVALID) {
		switch (image_type) {
		case IH_TYPE_INVALID:
			fprintf(stderr, "Invalid U-Boot image: bad size or signature\n");
			break;
		case IH_TYPE_ARCH_MISMATCH:
			fprintf(stderr, "Invalid U-Boot image: wrong architecture\n");
			break;
		default:
			fprintf(stderr, "Invalid U-Boot image: error code %d\n",
				image_type);
		}
1116
1117
		exit(1);
	}
1118
1119
1120
	if (image_type != IH_TYPE_FIRMWARE) {
		fprintf(stderr, "U-Boot image type mismatch: "
			"expected IH_TYPE_FIRMWARE, got %02X\n", image_type);
1121
1122
1123
1124
		exit(1);
	}
	uint32_t data_size = be32toh(buf32[3]); /* Image Data Size */
	uint32_t load_addr = be32toh(buf32[4]); /* Data Load Address */
1125
	if (data_size != len - HEADER_SIZE) {
1126
		fprintf(stderr, "U-Boot image data size mismatch: "
1127
			"expected %zu, got %u\n", len - HEADER_SIZE, data_size);
1128
1129
1130
1131
1132
1133
		exit(1);
	}
	/* TODO: Verify image data integrity using the checksum field ih_dcrc,
	 * available from be32toh(buf32[6])
	 *
	 * However, this requires CRC routines that mimic their U-Boot
Bernhard Nortmann's avatar
Bernhard Nortmann committed
1134
	 * counterparts, namely image_check_dcrc() in ${U-BOOT}/common/image.c
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
	 * and crc_wd() in ${U-BOOT}/lib/crc32.c
	 *
	 * It should be investigated if existing CRC routines in sunxi-tools
	 * could be factored out and reused for this purpose - e.g. calc_crc32()
	 * from nand-part-main.c
	 */

	/* If we get here, we're "good to go" (i.e. actually write the data) */
	pr_info("Writing image \"%.*s\", %u bytes @ 0x%08X.\n",
		IH_NMLEN, buf + HEADER_NAME_OFFSET, data_size, load_addr);

1146
	aw_write_buffer(dev, buf + HEADER_SIZE, load_addr, data_size, false);
1147
1148
1149
1150
1151
1152
1153
1154
1155

	/* keep track of U-Boot memory region in global vars */
	uboot_entry = load_addr;
	uboot_size = data_size;
}

/*
 * This function handles the common part of both "spl" and "uboot" commands.
 */
1156
void aw_fel_process_spl_and_uboot(feldev_handle *dev, const char *filename)
1157
1158
1159
1160
1161
{
	/* load file into memory buffer */
	size_t size;
	uint8_t *buf = load_file(filename, &size);
	/* write and execute the SPL from the buffer */
1162
	aw_fel_write_and_execute_spl(dev, buf, size);
1163
	/* check for optional main U-Boot binary (and transfer it, if applicable) */
1164
	if (size > SPL_LEN_LIMIT)
1165
		aw_fel_write_uboot_image(dev, buf + SPL_LEN_LIMIT, size - SPL_LEN_LIMIT);
1166
	free(buf);
1167
1168
}

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
/*
 * Test the SPL header for our "sunxi" variant. We want to make sure that
 * we can safely use specific header fields to pass information to U-Boot.
 * In case of a missing signature (e.g. Allwinner boot0) or header version
 * mismatch, this function will return "false". If all seems fine,
 * the result is "true".
 */
#define SPL_SIGNATURE			"SPL" /* marks "sunxi" header */
#define SPL_MIN_VERSION			1 /* minimum required version */
#define SPL_MAX_VERSION			1 /* maximum supported version */
1179
bool have_sunxi_spl(feldev_handle *dev, uint32_t spl_addr)
1180
1181
1182
{
	uint8_t spl_signature[4];

1183
	aw_fel_read(dev, spl_addr + 0x14,
1184
1185
1186
		&spl_signature, sizeof(spl_signature));

	if (memcmp(spl_signature, SPL_SIGNATURE, 3) != 0)
1187
		return false; /* signature mismatch, no "sunxi" SPL */
1188
1189
1190
1191
1192
1193

	if (spl_signature[3] < SPL_MIN_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X < required minimum 0x%02X\n",
			spl_signature[3], SPL_MIN_VERSION);
		fprintf(stderr, "You need to update your U-Boot (mksunxiboot) to a more recent version.\n");
1194
		return false;
1195
1196
1197
1198
1199
1200
	}
	if (spl_signature[3] > SPL_MAX_VERSION) {
		fprintf(stderr, "sunxi SPL version mismatch: "
			"found 0x%02X > maximum supported 0x%02X\n",
			spl_signature[3], SPL_MAX_VERSION);
		fprintf(stderr, "You need a more recent version of this (sunxi-tools) fel utility.\n");
1201
		return false;
1202
	}
1203
	return true; /* sunxi SPL and suitable version */
1204
1205
1206
1207
}

/*
 * Pass information to U-Boot via specialized fields in the SPL header
1208
1209
 * (see "boot_file_head" in ${U-BOOT}/arch/arm/include/asm/arch-sunxi/spl.h),
 * providing the boot script address (DRAM location of boot.scr).
1210
 */
1211
void pass_fel_information(feldev_handle *dev,
1212
			  uint32_t script_address, uint32_t uEnv_length)
1213
{
1214
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
1215
1216

	/* write something _only_ if we have a suitable SPL header */
1217
	if (have_sunxi_spl(dev, soc_info->spl_addr)) {
1218
1219
1220
1221
1222
1223
1224
		pr_info("Passing boot info via sunxi SPL: "
			"script address = 0x%08X, uEnv length = %u\n",
			script_address, uEnv_length);
		uint32_t transfer[] = {
			htole32(script_address),
			htole32(uEnv_length)
		};
1225
		aw_fel_write(dev, transfer,
1226
			soc_info->spl_addr + 0x18, sizeof(transfer));
1227
1228
1229
	}
}

1230
static int feldev_get_endpoint(feldev_handle *dev)
1231
{
1232
	struct libusb_device *usb = libusb_get_device(dev->usb->handle);
1233
1234
1235
	struct libusb_config_descriptor *config;
	int if_idx, set_idx, ep_idx, ret;

1236
	ret = libusb_get_active_config_descriptor(usb, &config);
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
	if (ret)
		return ret;

	for (if_idx = 0; if_idx < config->bNumInterfaces; if_idx++) {
		const struct libusb_interface *iface = config->interface + if_idx;

		for (set_idx = 0; set_idx < iface->num_altsetting; set_idx++) {
			const struct libusb_interface_descriptor *setting =
				iface->altsetting + set_idx;

			for (ep_idx = 0; ep_idx < setting->bNumEndpoints; ep_idx++) {
				const struct libusb_endpoint_descriptor *ep =
					setting->endpoint + ep_idx;

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1251
				/* Test for bulk transfer endpoint */
1252
1253
1254
1255
1256
1257
				if ((ep->bmAttributes & LIBUSB_TRANSFER_TYPE_MASK) !=
						LIBUSB_TRANSFER_TYPE_BULK)
					continue;

				if ((ep->bEndpointAddress & LIBUSB_ENDPOINT_DIR_MASK) ==
						LIBUSB_ENDPOINT_IN)
1258
					dev->usb->endpoint_in = ep->bEndpointAddress;
1259
				else
1260
					dev->usb->endpoint_out = ep->bEndpointAddress;
1261
1262
1263
1264
1265
1266
			}
		}
	}

	libusb_free_config_descriptor(config);

1267
	return LIBUSB_SUCCESS;
1268
1269
}

1270
1271
1272
1273
1274
1275
1276
1277
1278
/*
 * This function stores a given entry point to the RVBAR address for CPU0,
 * and then writes the Reset Management Register to request a warm boot.
 * It is useful with some AArch64 transitions, e.g. when passing control to
 * ARM Trusted Firmware (ATF) during the boot process of Pine64.
 *
 * The code was inspired by
 * https://github.com/apritzel/u-boot/commit/fda6bd1bf285c44f30ea15c7e6231bf53c31d4a8
 */
1279
void aw_rmr_request(feldev_handle *dev, uint32_t entry_point, bool aarch64)
1280
{
1281
	soc_info_t *soc_info = aw_fel_get_soc_info(dev);
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
	if (!soc_info->rvbar_reg) {
		fprintf(stderr, "ERROR: Can't issue RMR request!\n"
			"RVBAR is not supported or unknown for your SoC (id=%04X).\n",
			soc_info->soc_id);
		return;
	}

	uint32_t rmr_mode = (1 << 1) | (aarch64 ? 1 : 0); /* RR, AA64 flag */
	uint32_t arm_code[] = {
		htole32(0xe59f0028), /* ldr        r0, [rvbar_reg]          */
		htole32(0xe59f1028), /* ldr        r1, [entry_point]        */
		htole32(0xe5801000), /* str        r1, [r0]                 */
		htole32(0xf57ff04f), /* dsb        sy                       */
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe59f101c), /* ldr        r1, [rmr_mode]           */
		htole32(0xee1c0f50), /* mrc        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xe1800001), /* orr        r0, r0, r1               */
		htole32(0xee0c0f50), /* mcr        15, 0, r0, cr12, cr0, {2}*/
		htole32(0xf57ff06f), /* isb        sy                       */

		htole32(0xe320f003), /* loop:      wfi                      */
		htole32(0xeafffffd), /* b          <loop>                   */

		htole32(soc_info->rvbar_reg),
		htole32(entry_point),
		htole32(rmr_mode)
	};
	/* scratch buffer setup: transfers ARM code and parameter values */
1311
	aw_fel_write(dev, arm_code, soc_info->scratch_addr, sizeof(arm_code));
1312
1313
1314
1315
	/* execute the thunk code (triggering a warm reset on the SoC) */
	pr_info("Store entry point 0x%08X to RVBAR 0x%08X, "
		"and request warm reset with RMR mode %u...",
		entry_point, soc_info->rvbar_reg, rmr_mode);
1316
	aw_fel_execute(dev, soc_info->scratch_addr);
1317
1318
1319
	pr_info(" done.\n");
}

1320
1321
1322
1323
1324
1325
1326
1327
/* check buffer for magic "#=uEnv", indicating uEnv.txt compatible format */
static bool is_uEnv(void *buffer, size_t size)
{
	if (size <= 6)
		return false; /* insufficient size */
	return memcmp(buffer, "#=uEnv", 6) == 0;
}

1328
/* private helper function, gets used for "write*" and "multi*" transfers */
1329
static unsigned int file_upload(feldev_handle *dev, size_t count,
1330
				size_t argc, char **argv, progress_cb_t callback)
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
{
	if (argc < count * 2) {
		fprintf(stderr, "error: too few arguments for uploading %zu files\n",
			count);
		exit(1);
	}

	/* get all file sizes, keeping track of total bytes */
	size_t size = 0;
	unsigned int i;
	for (i = 0; i < count; i++)
		size += file_size(argv[i * 2 + 1]);

1344
	progress_start(callback, size); /* set total size and progress callback */
1345
1346
1347
1348
1349
1350

	/* now transfer each file in turn */
	for (i = 0; i < count; i++) {
		void *buf = load_file(argv[i * 2 + 1], &size);
		if (size > 0) {
			uint32_t offset = strtoul(argv[i * 2], NULL, 0);
1351
			aw_write_buffer(dev, buf, offset, size, callback != NULL);
1352

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1353
			/* If we transferred a script, try to inform U-Boot about its address. */
1354
			if (get_image_type(buf, size) == IH_TYPE_SCRIPT)
1355
				pass_fel_information(dev, offset, 0);
1356
			if (is_uEnv(buf, size)) /* uEnv-style data */
1357
				pass_fel_information(dev, offset, size);
1358
1359
1360
1361
		}
		free(buf);
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1362
	return i; /* return number of files that were processed */
1363
1364
}

1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
void feldev_claim(feldev_handle *dev)
{
	int rc = libusb_claim_interface(dev->usb->handle, 0);
#if defined(__linux__)
	if (rc != LIBUSB_SUCCESS) {
		libusb_detach_kernel_driver(dev->usb->handle, 0);
		dev->usb->iface_detached = true;
		rc = libusb_claim_interface(dev->usb->handle, 0);
	}
#endif
	if (rc)
		usb_error(rc, "libusb_claim_interface()", 1);

	rc = feldev_get_endpoint(dev);
	if (rc)
		usb_error(rc, "FAILED to get FEL mode endpoint addresses!", 1);
}

void feldev_release(feldev_handle *dev)
{
	libusb_release_interface(dev->usb->handle, 0);
#if defined(__linux__)
	if (dev->usb->iface_detached)
		libusb_attach_kernel_driver(dev->usb->handle, 0);
#endif
}

1392
1393
/* open handle to desired FEL device */
static feldev_handle *open_fel_device(int busnum, int devnum,
1394
1395
		uint16_t vendor_id, uint16_t product_id)
{
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
	feldev_handle *result = calloc(1, sizeof(feldev_handle));
	if (!result) {
		fprintf(stderr, "FAILED to allocate feldev_handle memory.\n");
		exit(1);
	}
	result->usb = calloc(1, sizeof(felusb_handle));
	if (!result->usb) {
		fprintf(stderr, "FAILED to allocate felusb_handle memory.\n");
		free(result);
		exit(1);
	}
1407
1408
1409
1410
1411
1412

	if (busnum < 0 || devnum < 0) {
		/* With the default values (busnum -1, devnum -1) we don't care
		 * for a specific USB device; so let libusb open the first
		 * device that matches VID/PID.
		 */
1413
1414
		result->usb->handle = libusb_open_device_with_vid_pid(NULL, vendor_id, product_id);
		if (!result->usb->handle) {
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
			switch (errno) {
			case EACCES:
				fprintf(stderr, "ERROR: You don't have permission to access Allwinner USB FEL device\n");
				break;
			default:
				fprintf(stderr, "ERROR: Allwinner USB FEL device not found!\n");
				break;
			}
			exit(1);
		}
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
	} else {
		/* look for specific bus and device number */
		bool found = false;
		ssize_t rc, i;
		libusb_device **list;

		rc = libusb_get_device_list(NULL, &list);
		if (rc < 0)
			usb_error(rc, "libusb_get_device_list()", 1);
		for (i = 0; i < rc; i++) {
			if (libusb_get_bus_number(list[i]) == busnum
			    && libusb_get_device_address(list[i]) == devnum) {
				found = true; /* bus:devnum matched */
				struct libusb_device_descriptor desc;
				libusb_get_device_descriptor(list[i], &desc);
				if (desc.idVendor != vendor_id
				    || desc.idProduct != product_id) {
					fprintf(stderr, "ERROR: Bus %03d Device %03d not a FEL device "
						"(expected %04x:%04x, got %04x:%04x)\n", busnum, devnum,
						vendor_id, product_id, desc.idVendor, desc.idProduct);
					exit(1);
				}
				/* open handle to this specific device (incrementing its refcount) */
				rc = libusb_open(list[i], &result->usb->handle);
				if (rc != 0)
					usb_error(rc, "libusb_open()", 1);
				break;
1452
1453
			}
		}
1454
		libusb_free_device_list(list, true);
1455

1456
1457
1458
1459
1460
		if (!found) {
			fprintf(stderr, "ERROR: Bus %03d Device %03d not found in libusb device list\n",
				busnum, devnum);
			exit(1);
		}
1461
	}
1462
1463
1464

	feldev_claim(result); /* claim interface, detect USB endpoints */

1465
1466
1467
	return result;
}

1468
1469
void feldev_close(feldev_handle *dev)
{
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
	if (dev) {
		if (dev->usb->handle) {
			feldev_release(dev);
			libusb_close(dev->usb->handle);
		}
		free(dev->usb); /* release memory allocated for felusb_handle */
	}
}

void feldev_init(void)
{
	int rc = libusb_init(NULL);
	if (rc != 0)
		usb_error(rc, "libusb_init()", 1);
}

void feldev_done(feldev_handle *dev)
{
	feldev_close(dev);
	free(dev);
	libusb_exit(NULL);
1491
1492
}

1493
1494
int main(int argc, char **argv)
{
1495
	bool uboot_autostart = false; /* flag for "uboot" command = U-Boot autostart */
1496
	bool pflag_active = false; /* -p switch, causing "write" to output progress */
1497
	feldev_handle *handle;
1498
	int busnum = -1, devnum = -1;
1499
1500

	if (argc <= 1) {
1501
		puts("sunxi-fel " VERSION "\n");
1502
1503
		printf("Usage: %s [options] command arguments... [command...]\n"
			"	-v, --verbose			Verbose logging\n"
1504
			"	-p, --progress			\"write\" transfers show a progress bar\n"
1505
			"	-d, --dev bus:devnum		Use specific USB bus and device number\n"
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
			"\n"
			"	spl file			Load and execute U-Boot SPL\n"
			"		If file additionally contains a main U-Boot binary\n"
			"		(u-boot-sunxi-with-spl.bin), this command also transfers that\n"
			"		to memory (default address from image), but won't execute it.\n"
			"\n"
			"	uboot file-with-spl		like \"spl\", but actually starts U-Boot\n"
			"		U-Boot execution will take place when the fel utility exits.\n"
			"		This allows combining \"uboot\" with further \"write\" commands\n"
			"		(to transfer other files needed for the boot).\n"
			"\n"
1517
1518
1519
			"	hex[dump] address length	Dumps memory region in hex\n"
			"	dump address length		Binary memory dump\n"
			"	exe[cute] address		Call function address\n"
1520
			"	reset64 address			RMR request for AArch64 warm boot\n"
1521
1522
			"	readl address			Read 32-bit value from device memory\n"
			"	writel address value		Write 32-bit value to device memory\n"
1523
			"	read address length file	Write memory contents into file\n"
1524
			"	write address file		Store file contents into memory\n"
1525
			"	write-with-progress addr file	\"write\" with progress bar\n"
1526
1527
			"	write-with-gauge addr file	Output progress for \"dialog --gauge\"\n"
			"	write-with-xgauge addr file	Extended gauge output (updates prompt)\n"
1528
1529
			"	multi[write] # addr file ...	\"write-with-progress\" multiple files,\n"
			"					sharing a common progress status\n"
1530
1531
1532
			"	multi[write]-with-gauge ...	like their \"write-with-*\" counterpart,\n"
			"	multi[write]-with-xgauge ...	  but following the 'multi' syntax:\n"
			"					  <#> addr file [addr file [...]]\n"
1533
			"	echo-gauge \"some text\"		Update prompt/caption for gauge output\n"
1534
			"	ver[sion]			Show BROM version\n"
1535
			"	sid				Retrieve and output 128-bit SID key\n"
1536
			"	clear address length		Clear memory\n"
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1537
			"	fill address length value	Fill memory\n"
1538
1539
			, argv[0]
		);
1540
		exit(0);
1541
1542
	}

1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
	/* process all "prefix"-type arguments first */
	while (argc > 1) {
		if (strcmp(argv[1], "--verbose") == 0 || strcmp(argv[1], "-v") == 0)
			verbose = true;
		else if (strcmp(argv[1], "--progress") == 0 || strcmp(argv[1], "-p") == 0)
			pflag_active = true;
		else if (strncmp(argv[1], "--dev", 5) == 0 || strncmp(argv[1], "-d", 2) == 0) {
			char *dev_arg = argv[1];
			dev_arg += strspn(dev_arg, "-dev="); /* skip option chars, ignore '=' */
			if (*dev_arg == 0 && argc > 2) { /* at end of argument, use the next one instead */
				dev_arg = argv[2];
				argc -= 1;
				argv += 1;
			}
			if (sscanf(dev_arg, "%d:%d", &busnum, &devnum) != 2
			    || busnum <= 0 || devnum <= 0) {
				fprintf(stderr, "ERROR: Expected 'bus:devnum', got '%s'.\n", dev_arg);
				exit(1);
			}
1562
			pr_info("Selecting USB Bus %03d Device %03d\n", busnum, devnum);
1563
1564
1565
1566
		} else
			break; /* no valid (prefix) option detected, exit loop */
		argc -= 1;
		argv += 1;
1567
	}
1568

1569
	feldev_init();
1570
	handle = open_fel_device(busnum, devnum, AW_USB_VENDOR_ID, AW_USB_PRODUCT_ID);
1571

1572
1573
	while (argc > 1 ) {
		int skip = 1;
1574

1575
		if (strncmp(argv[1], "hex", 3) == 0 && argc > 3) {
1576
1577
1578
1579
1580
			aw_fel_hexdump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
		} else if (strncmp(argv[1], "dump", 4) == 0 && argc > 3) {
			aw_fel_dump(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1581
1582
1583
1584
1585
1586
		} else if (strcmp(argv[1], "readl") == 0 && argc > 2) {
			printf("0x%08x\n", aw_fel_readl(handle, strtoul(argv[2], NULL, 0)));
			skip = 2;
		} else if (strcmp(argv[1], "writel") == 0 && argc > 3) {
			aw_fel_writel(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0));
			skip = 3;
1587
		} else if (strncmp(argv[1], "exe", 3) == 0 && argc > 2) {
1588
1589
			aw_fel_execute(handle, strtoul(argv[2], NULL, 0));
			skip=3;
1590
1591
1592
1593
1594
		} else if (strcmp(argv[1], "reset64") == 0 && argc > 2) {
			aw_rmr_request(handle, strtoul(argv[2], NULL, 0), true);
			/* Cancel U-Boot autostart, and stop processing args */
			uboot_autostart = false;
			break;
1595
		} else if (strncmp(argv[1], "ver", 3) == 0) {
1596
			aw_fel_print_version(handle);
1597
1598
		} else if (strcmp(argv[1], "sid") == 0) {
			aw_fel_print_sid(handle);
1599
		} else if (strcmp(argv[1], "write") == 0 && argc > 3) {
1600
1601
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
					pflag_active ? progress_bar : NULL);
1602
1603
1604
		} else if (strcmp(argv[1], "write-with-progress") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_bar);
1605
1606
1607
1608
1609
1610
		} else if (strcmp(argv[1], "write-with-gauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge);
		} else if (strcmp(argv[1], "write-with-xgauge") == 0 && argc > 3) {
			skip += 2 * file_upload(handle, 1, argc - 2, argv + 2,
						progress_gauge_xxx);
1611
1612
1613
1614
1615
		} else if ((strcmp(argv[1], "multiwrite") == 0 ||
			    strcmp(argv[1], "multi") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_bar);
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
		} else if ((strcmp(argv[1], "multiwrite-with-gauge") == 0 ||
			    strcmp(argv[1], "multi-with-gauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge);
		} else if ((strcmp(argv[1], "multiwrite-with-xgauge") == 0 ||
			    strcmp(argv[1], "multi-with-xgauge") == 0) && argc > 4) {
			size_t count = strtoul(argv[2], NULL, 0); /* file count */
			skip = 2 + 2 * file_upload(handle, count, argc - 3,
						   argv + 3, progress_gauge_xxx);
1626
1627
1628
1629
		} else if ((strcmp(argv[1], "echo-gauge") == 0) && argc > 2) {
			skip = 2;
			printf("XXX\n0\n%s\nXXX\n", argv[2]);
			fflush(stdout);
1630
1631
1632
1633
1634
1635
1636
		} else if (strcmp(argv[1], "read") == 0 && argc > 4) {
			size_t size = strtoul(argv[3], NULL, 0);
			void *buf = malloc(size);
			aw_fel_read(handle, strtoul(argv[2], NULL, 0), buf, size);
			save_file(argv[4], buf, size);
			free(buf);
			skip=4;
1637
		} else if (strcmp(argv[1], "clear") == 0 && argc > 2) {
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1638
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), 0);
1639
			skip=3;
Henrik Nordstrom's avatar
Henrik Nordstrom committed
1640
1641
1642
		} else if (strcmp(argv[1], "fill") == 0 && argc > 3) {
			aw_fel_fill(handle, strtoul(argv[2], NULL, 0), strtoul(argv[3], NULL, 0), (unsigned char)strtoul(argv[4], NULL, 0));
			skip=4;
1643
		} else if (strcmp(argv[1], "spl") == 0 && argc > 2) {
1644
1645
1646
1647
			aw_fel_process_spl_and_uboot(handle, argv[2]);
			skip=2;
		} else if (strcmp(argv[1], "uboot") == 0 && argc > 2) {
			aw_fel_process_spl_and_uboot(handle, argv[2]);
1648
1649
			uboot_autostart = (uboot_entry > 0 && uboot_size > 0);
			if (!uboot_autostart)
1650
				printf("Warning: \"uboot\" command failed to detect image! Can't execute U-Boot.\n");
1651
			skip=2;
1652
1653
1654
1655
1656
1657
1658
1659
		} else {
			fprintf(stderr,"Invalid command %s\n", argv[1]);
			exit(1);
		}
		argc-=skip;
		argv+=skip;
	}

Bernhard Nortmann's avatar
Bernhard Nortmann committed
1660
	/* auto-start U-Boot if requested (by the "uboot" command) */
1661
	if (uboot_autostart) {
1662
1663
1664
1665
		pr_info("Starting U-Boot (0x%08X).\n", uboot_entry);
		aw_fel_execute(handle, uboot_entry);
	}

1666
	feldev_done(handle);
1667

1668
1669
	return 0;
}